Runs are parallelograms. Find x and y
Answers
Answered by
1
Answer:
) SG = NU and SN = GU (opposite sides of a parallelogram are equal)
3x = 18
\begin{array}{l} \Rightarrow \mathrm{x}=\frac{18}{3}=6 \\ 3 \mathrm{y}-1=26 \text { and } \\ \Rightarrow 3 \mathrm{y}=26+1 \\ \Rightarrow \mathrm{y}=\frac{27}{3}=9 \end{array}⇒x=318=63y−1=26 and ⇒3y=26+1⇒y=327=9
x = 6 and y = 9
ii) 20 = y + 7 and 16 = x + y (diagonals of a parallelogram bisect each other)
y + 7 = 20
⇒ y = 20 - 7 = 13 and,
x + y = 16
⇒ x + 13 = 16
⇒ x = 16 - 13 = 3
x = 3 and y = 13
Similar questions