Math, asked by sp1362835, 8 months ago

rupees 5400 is borrowed at 4.5 % rate of interest per annum for 3 years . find the amount to be paid at the end of the third year

Answers

Answered by apurvanshu1905
29

Answer :

Principal = ₹5400

Rate = 4.5%

Time = 3 yrs

S.I. =  \frac{PRT}{100}

     = \frac{5400 * 4.5 *3}{100}

     = \frac{5400*45*3}{100*10}

     = ₹729

Amount = ₹5400 + ₹729

              = ₹6129

Answered by XxLUCYxX
1

 \large \bold{Given,} \\  \\  \sf \:   { \underline{Principal \:  =  \:₹ \:  5400 \:  \: | \:Rate \: of \: intrest \:  =  \: 4.5 \: \% \:  \: | \:  \: T ime \:  =  \: 3 \: years.}}

 \sf \: Amount \: received \:  o n  \: a   \: certain \:  sum \:  of  \: money  \: of \:  Rs \:  P \:  \\   \sf \: invested  \: at  \: the  \: rate  \: of  \: r   \: \%  \: per \:  annum \:  compounded  \: \\   \sf \: annually \:  fo r  \: n \:  years \:  is  \: given  \: by \: ― \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \color{red} \sf \:  \boxed{Amount \:  =  \: P \: \left[ \: 1 \:  +  \:  \frac{r}{100} \right]^n}

  \bold{Substituting \: the \: values, \: we \: get,}

 \sf{Amount \:  =  \: 5400 \: \left[ \: 1 \:  +  \:  \frac{4 \cancel{.}5}{1 000} \right]^3}

 \sf{{Amount \:  =  \: 540 0 \: \left[  \frac{1 \times 1000  \:  +  \: 45}{1000} \right]^3}}

 \sf{{Amount \:  =  \: 540 0 \: \left[   \frac{1045}{1000} \right]^3}}

 \sf \: Amount\:=\:₹ \: 6156 \:  \:  \: \color{orange}(approx)

\color{lime}\rule{200000000 pt}{2pt}

 \color{pink} \large \bold{More\:Formulas \: ―}

  \footnotesize\color{aqua} \boxed{ \begin {array} { |c|c|c|}  Statement&Formulas  \\  \\  \\❑ \: Amount  \: on  \: a  \: certain  \: sum  \: of \:  money  \: of \:  P  \: invested  \: at \:  the \:  rate  \: of  \: r  \%  \: per \:  \\  annum \:   compounded  \: annually \:  for \:  n \:  years \:  is  \: given \:  by &❑ \:  Amount\:=\:P[1\:+\: \frac{r}{100}]^n \\  \\ ❑ \: Amount \:  on  \: a  \: certain  \: sum  \: of  \: money \:  of  \: P \:  invested \:  at  \: the \:  rate \:  of \:  r  \%  \: per \\   \: annum  \: compounded  \: quarterly \:  for \:  n \:  years \:  is  \: given  \: by &❑ \:Amount\:=\:P[1\:+\: \frac{r}{200}]^{4n} \\  \\  ❑ \:Amount \:  on \:  a  \: certain \:  sum \:  of  \: money  \: of \:  P \:  invested \:  at  \: the \:  rat e \:  of \:  r  \% \:  per  \:  \\ annum \:  compounded  \: monthly \:  for  \: n  \: years  \: is  \: given \:  b  y&❑\:Amount\:=\:P\:[1\:+\: \frac{r}{1200}]^{12n} \\  \\ ❑ \:Amount\:on\:a\: certain\:sum\:of\:money\:P\:invested \:at\:a\:rate\:of\:\%\:per\:annum\: \\  compound\:semi\: annually\:for\:n\:years\:is\: given\:by &❑ \:  Amount\:=\:P\: \left[ \:1\:+\: \frac{r}{200} \right]^{2n}\: \end {array}}

Similar questions