Science, asked by mayabhoir10, 5 months ago

Rutherford nuclear model model of atom​

Answers

Answered by siya125
6

Explanation:

Rutherford overturned Thomson’s model in 1911 with his famous gold-foil experiment, in which he demonstrated that the atom has a tiny, massive nucleus. Five years earlier Rutherford had noticed that alpha particles beamed through a hole onto a photographic plate would make a sharp-edged picture, while alpha particles beamed through a sheet of mica only 20 micrometres (or about 0.002 cm) thick would make an impression with blurry edges. For some particles the blurring corresponded to a two-degree deflection. Remembering those results, Rutherford had his postdoctoral fellow, Hans Geiger, and an undergraduate student, Ernest Marsden, refine the experiment. The young physicists beamed alpha particles through gold foil and detected them as flashes of light or scintillations on a screen. The gold foil was only 0.00004 cm thick. Most of the alpha particles went straight through the foil, but some were deflected by the foil and hit a spot on a screen placed off to one side. Geiger and Marsden found that about one in 20,000 alpha particles had been deflected 45° or more. Rutherford asked why so many alpha particles passed through the gold foil while a few were deflected so greatly. “It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper, and it came back to hit you,” Rutherford said later

Answered by Loveleen68
6

Answer:

According to the Rutherford atomic model: The positively charged particles and most of the mass of an atom was concentrated in an extremely small volume. He called this region of the atom as a nucleus. Rutherford model proposed that the negatively charged electron.

Similar questions