Math, asked by asmantsr5, 5 months ago

S
(0) Solve the canation by quadratic formula
(i) x² +50+5=0 (i) x2 +6x +6=0
MARCH​

Answers

Answered by aryan073
3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) Solve given quadratic equation by formula method ::

 \:  \bf{(1) \:  \:  {x}^{2}  + 50x + 5 = 0}

 \:  \quad \implies \underline{  \pink \odot \: \displaystyle \sf{by \: determinant \: form}}

 \:  \quad \implies \displaystyle \sf{ {b}^{2}  - 4ac}

 \:  \:  \quad \implies \displaystyle \sf{ {( - 50)}^{2}  - 4(1)(5)}

 \:  \quad \implies \displaystyle \sf{2500 - 20}

 \:  \:  \quad \implies \displaystyle \sf{2480}

 \:  \:  \quad \implies \underline{  \ast\displaystyle \sf{ \: by \: formula \: method}}

 \:  \:  \quad \implies \displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

 \:  \quad \implies \displaystyle \sf{x =  \frac{ - ( - 50) \pm \sqrt{2480} }{2 \times 1} }

 \:  \:  \quad \implies \displaystyle \sf \: x =  \frac{50 \pm \sqrt{2480} }{2}

 \:  \:  \quad \implies \displaystyle \sf \: x =  \frac{50 \pm2 \sqrt{620} }{2}

 \:  \:  \quad \implies \displaystyle \sf \: x =  \frac{2(25 \pm \sqrt{620} ) }{2}

 \:  \: \quad \implies \displaystyle \sf \: x =  \cancel \frac{2}{2} \bigg( \frac{25 \pm \sqrt{620} }{1}  \bigg)

 \:  \:  \quad \implies \displaystyle \sf \: x = 25 \pm \sqrt{620}

 \:  \:  \boxed{ \boxed{ \underline{ \bf{ \color{red} \: the \: roots \: are \: 25 + 2 \sqrt{155} \:  and \: 25 - 2 \sqrt{155} }}}}

\pink{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

 \:  \bf{(2) \:  \:  {x}^{2}  + 6x + 6 = 0}

 \: \\   \quad \implies \displaystyle \sf{ {x}^{2}  + 6x + 6 = 0 \: ....given \: quadratic \: equation}

 \:  \:  \quad \implies \underline{ \displaystyle \sf{ \color{orange} \diamondsuit \: by \: determinant \: form : }}

 \:  \:  \quad \implies \displaystyle \sf \:  \delta \: d=  {b}^{2}  - 4ac

 \:  \:  \quad \implies \displaystyle \sf \:  {( - 6)}^{2}  - 4(  1)( - 6)

 \:  \:  \quad \implies \displaystyle \sf \: 36 + 24

 \:  \:  \quad \implies \displaystyle \sf \: 60

 \:  \:   \\ \:  \quad \implies \displaystyle \sf{ \pink \clubsuit \: by \: using \: formula  \: method}

 \:  \:  \quad \implies \displaystyle \sf \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

 \:  \:  \quad \implies \displaystyle \sf \:  x =  \frac{ -6 \pm \sqrt{60} }{2 \times 1}

 \:  \:  \quad \implies \displaystyle \sf \: x =   \frac{ - 6 \pm \sqrt{60} }{2}

 \:  \:  \quad  \implies \displaystyle \sf \: x =  \frac{ - 6 \pm \sqrt{4 \times 15} }{2}

 \:  \:  \quad \implies \displaystyle \sf{x =  \frac{ - 6 \pm2 \sqrt{15} }{2} }

 \:  \:  \quad \implies \displaystyle \sf \: x =  \frac{ 2( - 3 \pm \sqrt{15}) }{2}

 \:  \:  \quad \implies \displaystyle \sf x = \cancel  \frac{2}{2}  \frac{  - 3 \pm \sqrt{15} }{1}

  \:  \:  \quad \implies \displaystyle \sf{x =  - 3 \pm \sqrt{15}}

 \:  \boxed{ \boxed{ \underline{ \underline{ \color{brown} \bf{the \: roots \: are \:  - 3 +  \sqrt{15}  \: and \: x =  - 3 -  \sqrt{15} }}}}}

\color{lime}{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

Similar questions