Math, asked by NotParmesh, 1 day ago

S= 1 + 1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + n terms (telescopic series)

Answers

Answered by mathdude500
8

 \green{\large\underline{\sf{Solution-}}}

Given series is

\rm :\longmapsto\:S = 1 + \dfrac{1}{1 + 2}  + \dfrac{1}{1 + 2 + 3}  +  -  - n \: terms

So, nth term of the series is

\rm :\longmapsto\:T_n = \dfrac{1}{1 + 2 + 3 + 4 +  -  -  - n \: terms}

\rm :\longmapsto\:T_n = \dfrac{1}{ \:  \:  \: \displaystyle\sum_{k=1}^n \: k \:  \:  \: }

\rm :\longmapsto\:T_n = \dfrac{1}{\dfrac{n(n + 1)}{2} }

\rm :\longmapsto\:T_n =2 \times  \dfrac{1}{n(n + 1)}

\rm :\longmapsto\:T_n =2 \times  \dfrac{n + 1 - n}{n(n + 1)}

\rm :\longmapsto\:T_n =2 \times  \bigg[\dfrac{n + 1}{n(n + 1)} - \dfrac{n}{n(n + 1)}  \bigg]

\rm :\longmapsto\:T_n =2 \bigg[\dfrac{1}{n} - \dfrac{1}{n + 1}  \bigg]

So, on substituting n = 1, 2, 3, - - - ,n, we get

\rm :\longmapsto\:T_1 =2 \bigg[\dfrac{1}{1} - \dfrac{1}{2}  \bigg]

\rm :\longmapsto\:T_2 =2 \bigg[\dfrac{1}{2} - \dfrac{1}{3}  \bigg]

\rm :\longmapsto\:T_3 =2 \bigg[\dfrac{1}{3} - \dfrac{1}{4}  \bigg]

.

.

.

.

.

.

.

\rm :\longmapsto\:T_n =2 \bigg[\dfrac{1}{n} - \dfrac{1}{n + 1}  \bigg]

Now, we know that

\rm :\longmapsto\:S = T_1 + T_2 + T_3 +  -  -  -  + T_n

\rm \:  =  \: 2\bigg[1 - \cancel \dfrac{1}{2}  +\cancel \dfrac{1}{2}  -\cancel \dfrac{1}{3}  +  -  -  -  +\cancel \dfrac{1}{n}  - \dfrac{1}{n + 1}  \bigg]

\rm \:  =  \: 2\bigg[1 - \dfrac{1}{n + 1} \bigg]

\rm \:  =  \: 2\bigg[\dfrac{n + 1 - 1}{n + 1} \bigg]

\rm \:  =  \: 2\bigg[\dfrac{n}{n + 1} \bigg]

\rm \:  =  \: \dfrac{2n}{n + 1}

Hence,

\boxed{\tt{ S = 1+\dfrac{1}{1 + 2}+\dfrac{1}{1 + 2 + 3}  +  -  - n \:terms = \dfrac{2n}{n + 1}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\sum_{k=1}^n1 = n \: }}}

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\sum_{k=1}^nk =  \frac{n(n + 1)}{2} \: }}}

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\sum_{k=1}^n {k}^{2}  =  \frac{n(n + 1)(2n + 1)}{6} \: }}}

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\sum_{k=1}^n {k}^{3}  =  \bigg[\frac{n(n + 1)}{2}\bigg] ^{2}  \: }}}

Similar questions