Science, asked by Rajputadarshsingh3, 11 months ago

ʜᴇʏᴀ ᴍᴀᴛᴇ ᴘʀᴏᴠᴇ ʟᴇɴs ᴍᴀᴋɪɴɢ ғᴏʀᴍᴜʟᴀ.​

Answers

Answered by Anonymous
14

We know that -

\implies{\sf \dfrac{\mu}{v}-\dfrac{1}{u}=\dfrac{\mu-1}{R}\: \: \:→(1)}

D' is virtual object of {\sf R_2} Surface

\implies{\sf \dfrac{\dfrac{1}{\mu}}{v}-\dfrac{1}{v'}=\dfrac{\dfrac{1}{\mu}-1}{R_2} }

\implies{\sf \dfrac{1}{v}-\dfrac{\mu'}{v'}=\dfrac{1-\mu}{R_2}\:\:\:\:→(2)}

\underline{\rm Adding \: equation \: 1\: and \:2}

\implies{\sf \dfrac{1}{v}-\dfrac{1}{u}=\dfrac{\mu-1}{R_1}+\dfrac{1-\mu}{R_2} }

\implies{\sf \dfrac{1}{v}-\dfrac{1}{u}=\dfrac{\mu-1}{R_2} }

\implies{\sf \dfrac{1}{v}-\dfrac{1}{u}=(\mu -1)\left[\dfrac{1}{R_1}-\dfrac{1}{R_2}\right] }

When image kept at \infty then image formed at focus

u = \infty , v = f

\implies{\sf  \dfrac{1}{f}-\dfrac{1}{\infty}=(\mu-1)\left[\dfrac{1}{R_1}-\dfrac{1}{R_2}\right]}

\color{red}\bullet\underline{\boxed{\sf \dfrac{1}{f}=(\mu-1)\left[\dfrac{1}{R_1}-\dfrac{1}{R_2}\right]}}

Attachments:
Answered by kajalshrivastava0854
1

Answer:

adii \: ole \: ole \: kaiche \: ho \:

Similar questions