Math, asked by rautvaishnavi10, 3 months ago

s+2/(s+4)(s+1) partial fraction​

Answers

Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

Resolve in to partial fraction :-

 \sf \: \dfrac{s + 2}{(s + 4)(s + 1)}

\large\underline{\bold{ANSWER-}}

\rm :\longmapsto\:Let \: \dfrac{s + 2}{(s + 4)(s + 1)}  = \dfrac{a}{s + 4}  + \dfrac{b}{s + 1}  -  - (1)

  • Multiply by (s + 4)(s + 1) both sides, we get

\rm :\longmapsto\:s + 2 = a(s + 1) \:  +  \: b(s + 4)

  • Substituting 's = - 1' in the given equation, we get

\rm :\longmapsto\:( - 1 + 2) = 0 + b( - 1 + 4)

\rm :\implies\:b \:  =  \: \dfrac{1}{3}  -  - (2)

Now,

  • Substituting 's = - 4' in the given equation, we get

\rm :\longmapsto\: - 4 + 2 = a( - 4 + 1) + 0

\rm :\longmapsto\: - 2 =  - 3a

\rm :\implies\:a = \dfrac{2}{3}  -  - (3)

Now,

  • Substitute values of a and b in equation (1), we get

\rm :\implies\: \boxed{ \tt\dfrac{s + 2}{(s + 4)(s + 1)}  = \dfrac{2}{3(s + 4)}  + \dfrac{1}{3(s + 1)}}

─━─━─━─━─━─━─━─━─━─━─━─━─

What is Partial Fraction?

  • This method is used to decompose a given rational expression into simpler fractions.

Rules to break the term in Partial Fraction :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf factor \: in \: denominator & \bf term \: in \: partial \: fraction \\ \frac{\qquad \qquad\qquad\qquad}{} & \frac{\qquad \qquad\qquad\qquad}{} \\ \sf ax + b & \sf\displaystyle \frac{A}{{ax + b}}  \\ \\ \sf {\left( {ax + b} \right)^2} & \sf \displaystyle \frac{{{A_1}}}{{ax + b}} + \frac{{{A_2}}}{{{{\left( {ax + b} \right)}^2}}} \\ \\ \sf  {ax}^{2} + bx + c  & \sf \displaystyle \frac{{Ax + B}}{{a{x^2} + bx + c}} \end{array}} \\ \end{gathered}

Similar questions