Math, asked by dars99608, 6 months ago

sհօա ԵհαԵ (3x+7)2-84x=(3x-7)2

{2=(ɾαísҽժ Եօ Եհҽ թօաҽɾ)}​

Answers

Answered by lavish10313
1

Answer:

LHS = (3x + 7) - 84x

= (3x)2 +2(3x)(7) + (7)2 - 84x

= 9x2 + 42x + 49 - 84x

= 9x2 + (42 - 84) x + 49

= 9x2 -42x + 49

RHS = (3x - 7)2

= (3x)2 -2(3x)(7) + (7)2

= 9x2 - 42x + 49

Since, LHS = RHS

∴ (3x + 7)2 -84x = (3x -7)2

Answered by steffiaspinno
0

(3x+7)²-84x=(3x-7)²

Hence proved

Step-by-step explanation:

GIVEN EQUATION: (3x+7)²-84x=(3x-7)²

Show that LHS = RHS

LHS = (3X+7)²-84x

RHS = (3X-7)²

STEP 1 :

Expand the LHS

Expand (3x+7)² = (3x)²+2(3x)(7)+49

==>9x²+(6x)(7)+49

==>9x²+42x+49

STEP 2:

Applying the formula

We know that,

(a+b)²=a²+2ab+b²

Applying this equation on LHS

LHS = (3x+7)²-84x

LHS = 9x²+42x+49-84x

LHS = 9x²+42x-84x+49

LHS = 9x²-42x+49

we know that,

(a-b)²=a²-2ab+b²

LHS = (3x)²-42x+7²

LHS = (3x-7)²

RHS = (3x-7)²

LHS = RHS

Similar questions