ᴘʟᴢ ғᴀᴄᴛᴏʀɪsᴇ ɪᴛ!
❎☠︎︎Don't dare to spam☠︎︎❎
ᴄʟᴀss 9
ᴄʜᴀᴘᴛᴇʀ: ᴘᴏʟʏɴᴏᴍɪᴀʟs
ᴊɪɴᴋᴏ ɴᴀʜɪ ᴀᴀᴛᴀ ᴋʀɪᴘʏᴀ ᴅᴏᴏʀ ʀᴀʜᴇɪɴ
Attachments:
Answers
Answered by
11
Solution :-
↪ x³ + 13x² + 32x + 20
↪ x³ + x² + 12x² + 12x + 20x + 20
↪x²(x + 1) + 12x(x + 1) + 20(x + 1)
↪(x + 1) (x² + 12x + 20)
↪(x + 1) (x² + 10x + 2x + 20)
↪(x + 1) [x(x + 10) + 2(x + 10)]
↪(x + 1) (x + 10) (x + 2)
Some algebraic identities:-
- (a + b)² = a² + 2ab + b²
- (a² - b²) = (a + b) (a - b)
- (a + b)³ = a³ + 3a²b + 3ab²+ b³
- (a - b)³ = a³ - 3a²b + 3ab² - b³
- (a + b + c)² = a²+b²+c²+2ab+2bc+2ac
- (x + a) (x + b) = x² + (a+b)x + ab
Answered by
4
x³+13x²+32x+20
=(x+1)(x²+12x+20)
[∵, for x = -1, x³+13x²+32x+20
= -1+13-32+20
= 0. ]
=(x+1)(x²+10x+2x+20)
=(x+1){x(x+10)+2(x+10)}
=(x+1){(x+10)(x+2)}
=(x+1)(x+2)(x+10)
Similar questions