Math, asked by srihithkp2005, 2 months ago

S]
. If sin (A + B) = 1 and tan (A - B) = 1/v3, find the value of:
i) tan A+ tan B
ii) sec A- cosec B

Answers

Answered by amansharma264
86

EXPLANATION.

⇒ sin(A + B) = 1. - - - - - (1).

⇒ tan(A - B) = 1/√3. - - - - - (2).

As we know that,

We can write equation as,

⇒ sin(A + B) = sin(90°). - - - - - (1).

⇒ tan(A - B) = tan(30°). - - - - - (2).

We get,

⇒ A + B = 90°. - - - - - (1).

⇒ A - B = 30°. - - - - - (2).

We get,

⇒ 2A = 120°.

⇒ A = 60°.

Put the value of A = 60° in equation (1), we get.

⇒ 60° + B = 90°.

⇒ B = 90° - 60°.

⇒ B = 30°.

Value of A = 60° & B = 30°.

To find :

(1) = tan(A) + tan(B).

⇒ tan(60°) + tan(30°).

⇒ √3 + 1/√3.

⇒ 3 + 1/√3 = 4/√3.

tan(A) + tan(B) = 4/√3.

(2) = sec(A) - cosec(B).

⇒ sec(60°) - cosec(30°).

⇒ 2 - 2 = 0.

sec(A) - cosec(B) = 0.

Answered by Anonymous
58

Given :-

If  sin (A + B) = 1 and tan (A - B) = 1/√3

To Find :-

value of:

i) tan A+ tan B

ii) sec A- cosec B

Solution :-

We know that

sin 90 = 1

tan 30 = 1/√3

So,

sin(A + B) = 90

tan(A - B) = 30

A + B + A - B = 90 + 30

(A + A) + (B - B) = 120

2A = 120

A = 120/2

A = 60

By putting value of A in 2

A - B = 30

60 - B = 30

-B = 30 - 60

-B = -30

B = 30

Finding values

tan 60 + tan 30

We know that

tan 60 = √3

tan 30 = 1/√3

√3 + 1/√3

√3 × √3 + 1/√3

3 + 1/√3

4/√3

sec A- cosec B

sec 60 - cosec 30

We know that

sec 60 = 2

cosec 30 = 2

2 - 2 = 0

.

Similar questions