Physics, asked by floatingheart36, 9 months ago

S is equal. . ut 1/2 at2 with calculus method...........no need silly answer​

Answers

Answered by Anonymous
8

AnswEr :

We have to derive s = ut + ½at² by calculus method

Consider the Velocity - Displacement Relation :

 \sf \: v =  \dfrac{dx}{dt}

From the First Kinematic Equation,

 \sf \: v = u + at

Thus,

 \sf \: u + at =  \dfrac{dx}{dt}  \\  \\  \longrightarrow \:  \sf \: (u + at)dt = dx

Integrating on both sides,

 \longrightarrow \displaystyle \:  \sf \int _0^s{x}^{0} .ds \:  =  \int_0^tu {t}^{0}.dt  +  \int_0^tat.dt \\  \\  \longrightarrow \:  \displaystyle \:  \sf \:  \int _0^s{x}^{0} .ds \:  =u  \int_0^t {t}^{0}.dt  + a\int_0^tt.dt \\  \\  \longrightarrow \:  \sf \:  \bigg[x \bigg]_0^s = u\bigg[t \bigg]_0^t + a\bigg[ \dfrac{ {t}^{2} }{2}  \bigg]_0^t \\  \\  \longrightarrow \:  \sf \: (s - 0) = u(t - 0) +  \dfrac{a}{2} ( {t}^{2}  -  {0}^{2} ) \\  \\  \large{ \longrightarrow \:  \boxed{ \boxed{ \sf \: s = ut +  \dfrac{1}{2} a {t}^{2} }}}

Answered by MarshmellowGirl
4

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

Attachments:
Similar questions