Math, asked by gxfcug, 9 months ago

ғɪɴᴅ ᴛʜᴇ ᴀʀᴇᴀ ᴏғ ᴀ ʀᴇᴄᴛᴀɴɢʟᴇ ɪғ ɪᴛ's ᴘᴇʀɪᴍᴇᴛᴇʀ ɪs 164ᴄᴍ,ᴡʜᴇʀᴇ ɪᴛ's ʟᴇɴɢᴛʜ ɪs 16ᴄᴍ​

Answers

Answered by Anonymous
0

\huge\boxed{\fcolorbox{black}{pink}{Answer}}</p><p>

Let the number of boys be 'x'.

So number of boys = x

Number of girls = Number of boys + 52

= x + 52

Total number of students = 1260

A/q Total number of students = 1260

⟹ Number of Boys + Number of Girls = 1260

⟹ x + x + 52 = 1260

⟹ 2x = 1260 - 52

⟹ 2x = 1208

⟹ x = 1208/2

⟹ x = 604

Therefore, the number of boys = 604

So, the number of girls = x + 52

= 604 + 52

= 656

Answered by Anonymous
3

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow perimeter\:of\:rectangle\:is\:164cm.

\sf\dashrightarrow length(L)= 16cm

\large\underline\bold{TO\:FIND ,}

\sf\dashrightarrow AREA\:OF\:RECTANGLE

FOMULA IN USE,

\large{\boxed{\bf{ \star\:\: PERIMETER\:OF\:RECTANGLE:- 2 \times (LENGTH+BREADTH) \:\: \star}}}

\large\underline\bold{AREA\:OF\:RECTANGLE\:=LENGTH \times \: BREADTH}

\large\underline\bold{SOLUTION,}

\sf\dashrightarrow LENGTH(L)=8cm

\sf\dashrightarrow BREADTH (B)= ?

FIRST FINDING THE BREADTH,

THEREFORE,

\sf\therefore PERIMETER\:OF\:RECTANGLE:- 2 \times (LENGTH+BREADTH)

\sf\implies 164=2\times (8+b)

\sf\implies \dfrac{164}{2} = 8+b

\sf\implies \cancel \dfrac{164}{2} = 8+b

\sf\implies 84= 8+b

\sf\implies 84-8=b

\sf\implies 76cm

\large{\boxed{\bf{ \star\:\: breadth= 76cm\:\: \star}}}

NOW,

\sf\dashrightarrow LENGTH(L)=8cm

\sf\dashrightarrow BREADTH (B)= 76cm

\sf\therefore AREA\:OF\:RECTANGLE\:=LENGTH \times \: BREADTH

\sf\implies 8 \times 76

\sf\implies 608cm^2

\large{\boxed{\bf{ \star\:\:area\:of\:rectangle= 608cm^2\:\: \star}}}

\large\underline\bold{AREA\:OF\:RECTANGLE= 608cm^2}

____________________

REFER THE DIAGRAM,

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,25){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){25}}\put(35,0){\line(0,1){25}}\put(17,-2){76cm}\put(18,-2){}\put(35,15){8cm}\put(18,0){ }\end{picture}

Similar questions