Math, asked by Anonymous, 5 months ago

ᴘʟᴇᴀsᴇ sᴏʟᴠᴇ ᴛʜɪs ǫᴜᴇsᴛɪᴏɴ :

cos²θ - 3cosθ + 2 / sin²θ = 1 ​

Answers

Answered by Anonymous
7
  • GIVEN:-

\large{\sf{\frac{cos²θ - 3cosθ + 2}{sin^2\theta}=1}}

  • To Find:-

Evaluation.

  • SOLUTION:-

\large\Longrightarrow{\sf{\frac{cos²θ - 3cosθ + 2}{sin^2\theta}=1}}

\large\Longrightarrow{\sf{\frac{cos²θ - 3cosθ + 2}{1-cos^2\theta}=1}}

\small\because{\sf{(sin^2\theta=1-cos^2\theta)}}

By cross multiplication,

\small\Longrightarrow{\sf{cos²θ – 3cosθ + 2= 1-cos^2\theta}}

\small\Longrightarrow{\sf{cos²θ – 3cosθ + 2-1+cos^2\theta=0}}

\small\Longrightarrow{\sf{2cos²θ – 3cosθ +1=0}}

By splitting the middle term,

\small\Longrightarrow{\sf{2cos²θ – 2cosθ – cosθ + 1 = 0}}

\small\Longrightarrow{\sf{2cosθ (cosθ – 1) – 1 (cosθ – 1) = 0}}

\small\Longrightarrow{\sf{(2 cosθ – 1) (cosθ – 1) = 0}}

\large\boxed{\sf{cosθ =	\frac{1}{2}}}

or,

\large\boxed{\sf{cosθ =	1}}

as, cosθ ≠ 1 (because θ > 0)

=> cosθ = cos 1/2

∴ cosθ = cos 60°

\huge\red\therefore\boxed{\bf{\red{\theta=60\degree}}}

Similar questions