ғᴀsᴛ !!!!!!!!!!
ᴘʟᴇᴀsᴇ sᴏʟᴠᴇ ᴛʜɪs ǫᴜᴇsᴛɪᴏɴ :
cos²θ - 3cosθ + 2 / sin²θ = 1
(ᴅᴏɴ'ᴛ sᴘᴀᴍ ! )
Answers
Answered by
6
Step-by-step explanation:
cos²θ – 3cosθ + 2 = sin²θ = 1 – cos²θ
⇒ 2cos²θ – 3cosθ + 1 = 0
⇒ 2cos²θ – 2cosθ – cosθ + 1 = 0
⇒ 2cosθ (cosθ – 1) – 1 (cosθ – 1) = 0
⇒ (2 cosθ – 1) (cosθ – 1) = 0
⇒ cosθ =
1
= 1
2
as cosθ ≠ 1 as θ > 0
∴ cosq = cos 60°
⇒ θ = 60°
Answered by
4
Answer:
e = 60°,0°
Step-by-step explanation:
Given Equation is (cos²0 - 3coso + 2)/ sin?0 = 1
→ cos?x 3cosx + 2 = sin?0
- cos?x - 3coso + 2 = (1 - cos?0)
→ cos?0 - 3 cos + 2 -1+ cos20 = 0
→ 2cos?0 - 3cose + 1 = 0
→ 2cos20 - 2 cos - cos + 1= 0
► 2cos(coso - 1) - (coso - 1) = 0
- (2 cos - 1)(coso - 1) = 0
→ cos = (1/2) (or) code = 1 =
- e = 60° (or) 0°
pls follow me
Similar questions