Math, asked by needhelpwithmaths52, 2 months ago

ᴘʟᴇᴀsᴇ ʜᴇʟᴘ ᴍᴇ ᴡɪᴛʜ ᴛʜɪs !!!

ᴋɪɴᴅʟʏ ᴅᴏɴᴛ sᴘᴀᴍ

sᴛᴇᴘ ʙʏ sᴛᴇᴘ ᴇxᴘʟᴀɴᴀᴛɪᴏɴ ɴᴇᴇᴅᴇᴅ

ᴛʜᴀɴᴋ ᴜʜ :)​

Attachments:

Answers

Answered by Anonymous
22

 {\pmb{\underline{\sf{ Required \ Solution ... }}}} \\

  • ABCD is a Trapezium.
  • In Which, AB || CD &  {\sf{ \angle D = 70^{ \circ } }} and  {\sf{ \angle C = 40^{ \circ } }}

 \\ {\pmb{\underline{\sf{According \ to \ Postulates ... }}}}

If there is two lines which are Parallel to each other but when any transversal line bisect ( or cross) both line then Sum of angle on Same side will be 180° .

In this Way,

  •  {\sf{ \angle A + \angle D = 180^{ \circ } }}
  •  {\sf{ \angle B + \angle C = 180^{ \circ } }}

These Pairs of angles is also known as Corresponding sides of each other.

 \\ {\pmb{\underline{\sf{Final \ Solution ... }}}}

 \colon\implies{\sf{ \angle A + \angle D = 180^{ \circ } }} \\ \\ \colon\implies{\sf{ \angle A = 180^{ \circ } - \angle D}} \\ \\ \colon\implies{\sf{ \angle A = 180^{ \circ } - 70^{ \circ } }} \\ \\ \colon\implies{\sf\red{ \angle A = 110^{ \circ } }}

Similarly,

 \colon\implies{\sf{ \angle B + \angle C = 180^{ \circ } }} \\ \\ \colon\implies{\sf{ \angle B = 180^{ \circ } - \angle C}} \\ \\ \colon\implies{\sf{ \angle B = 180^{ \circ } - 40^{ \circ } }} \\ \\ \colon\implies{\sf\red{ \angle B = 140^{ \circ } }} \\

 \\ {\pmb{\underline{\sf{Verification ... }}}}

As We know that:

The Sum of all the angles of any Quadrilateral ( Four Sides) is 360° .

We can also Apply these Formula to Find the Total angles of Any Quadrilateral of any sides as:

 \circ \ {\underline{\boxed{\sf\green{ Total _{(Angle)} = (Side - 2) \times 180^{ \circ } }}}}

According to this Method,

We can find the total Angle of Trapezium as:

 \colon\implies{\sf{ Total _{(angle)} = (4 - 2) \times 180^{ \circ } }} \\ \\ \colon\implies{\sf{  = 2 \times 180^{ \circ } }} \\ \\ \colon\implies{\sf{ 360^{ \circ } }}

Now, Substituting values as:

 \colon\implies{\sf{ \angle A + \angle B + \angle C + \angle D = 360^{ \circ } }} \\ \\ \colon\implies{\sf{ 110^{ \circ } + 140^{ \circ } + 40^{ \circ } + 70^{ \circ } = 360^{ \circ } }} \\ \\ \colon\implies{\sf\green{ 360^{ \circ } = 360^{ \circ } }}

Hence,

  •  {\sf{ \angle A = 110^{ \circ } }}
  •  {\sf{ \angle B = 140^{ \circ } }}
Similar questions