Math, asked by Anonymous, 8 months ago

ǫᴜᴇsᴛɪᴏɴ ( ᴊᴇᴇ ) ❤ :

sᴏʟᴠᴇ ᴛʜᴇ ǫᴜᴇsᴛɪᴏɴ ᴏғ ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ ^_^ .....

✮ɢɪᴠᴇ ᴅᴇᴛᴀɪʟᴇᴅ ᴇxᴘʟᴀɴᴀᴛɪᴏɴ✮

ᴛʜᴀɴᴋs :)
ᴀʟʟ ᴛʜᴇ ʙᴇsᴛ ❤ .

Attachments:

Answers

Answered by amansharma264
48

EXPLANATION.

  \displaystyle\lim_{x \to \:  -  \infty } = ( \frac{x {}^{4} \sin( \frac{1}{x}  ) +  {x}^{2}   }{(1 +  |x| {}^{3} ) } )

it \:  \: is \:  \: in \:  \: form \:  \: of \:  =  \frac{ \infty }{ \infty }

\displaystyle\lim_{x \to \:  -  \infty } = ( \frac{x {}^{4}  \sin( \frac{1}{x} ) +  {x}^{2}  }{1 - x {}^{3} } )

Divide numerator and denominator by x³

\displaystyle\lim_{x \to \:  -  \infty } = (  \frac{ \frac{x {}^{4} }{x {}^{3}   } \sin( \frac{1}{x} ) +  \frac{x {}^{2} }{x {}^{3} }   }{ \frac{1}{x {}^{3} }  -  \frac{ {x}^{3} }{x {}^{3} } } )

\displaystyle\lim_{x \to \:  -  \infty } = ( \frac{x \sin( \frac{1}{x} ) +  \frac{1}{x}  }{ \frac{1}{x {}^{3} } - 1 } )

Therefore,

we get,

\displaystyle\lim_{x \to \:  -  \infty } = ( \frac{1 + 0}{0 - 1} )

\displaystyle\lim_{x \to \:  -  \infty } =  - 1

value = -1

Answered by FehlingSolution
32

Please refer to the attachment.

In case of any query please contact me.

- A JEE aspirant this side.

Attachments:
Similar questions