S sec(ax +b) tan(ax + b) dx
Answers
Answer:
ANSWER
∫sin(ax+b)cos(ax+b)dx
u=sin(ax+b)⇒dx=
acos(ax+b)
1
du
∫sin(ax+b)cos(ax+b)=
a
1
∫udu
=
2a
u
2
=
2a
sin
2
(ax+b)
∫sin(ax+b)cos(ax+b)dx=
2a
sin
2
(ax+b)
+C
Step-by-step explanation:
Please mark me as Braniest ok and I hope you that it's helpful for you
Answer: The value of integration is (sec(ax+b))/a + c, where c is constant of integration
Step-by-step explanation:
⇒
⇒
Let ax + b = u
Differentiating both sides with respect to x,
⇒
⇒
Substituting values of ax + b and dx in terms of u and du :
⇒
⇒
Let cos(u) = t
Differentiating both sides with respect to u,
⇒
⇒
Substituting u in terms of t :
⇒
⇒
⇒ ( c is constant of integration)
Substituting back value of t in terms of u.
⇒
⇒
⇒
Substituting back value of u in terms of x.
⇒
⇒
The value of given integration is
#SPJ3