Math, asked by rakeshkar891, 5 months ago

S sec(ax +b) tan(ax + b) dx​

Answers

Answered by ankitajiteshpatel
1

Answer:

ANSWER

∫sin(ax+b)cos(ax+b)dx

u=sin(ax+b)⇒dx=

acos(ax+b)

1

du

∫sin(ax+b)cos(ax+b)=

a

1

∫udu

=

2a

u

2

=

2a

sin

2

(ax+b)

∫sin(ax+b)cos(ax+b)dx=

2a

sin

2

(ax+b)

+C

Step-by-step explanation:

Please mark me as Braniest ok and I hope you that it's helpful for you

Answered by prateekmishra16sl
0

Answer: The value of integration is (sec(ax+b))/a + c, where c is constant of integration

Step-by-step explanation:

\int{sec(ax+b)tan(ax+b)} \, dx

\int{\frac{1}{cos(ax+b)}*\frac{sin(ax+b)}{cos(ax+b)} } \, dx

\int{\frac{sin(ax+b)}{cos^{2} (ax+b)} } \, dx

Let ax + b = u

Differentiating both sides with respect to x,

a = \frac{du}{dx}

dx = \frac{du}{a}

Substituting values of ax + b and dx in terms of u and du :

\int{\frac{sinu}{cos^{2}u} } \, \frac{du}{a}

\int{\frac{sinu}{acos^{2}u} } \,du

Let cos(u) = t

Differentiating both sides with respect to u,

-sin(u) = \frac{dt}{du}

sin(u) du = -dt

Substituting u in terms of t :

\int\ {\frac{1}{at^{2} } } \, (-dt)

\int\ {\frac{-1}{at^{2} } } \, dt

\frac{1}{at} + c  ( c is constant of integration)

Substituting back value of t in terms of u.

\frac{1}{t} + c  

\frac{1}{acos(u)} + c

\frac{sec(u)}{a} + c

Substituting back value of u in terms of x.

\frac{sec(u)}{a} + c

\frac{sec(ax+b)}{a} + c  

The value of given integration is  \frac{sec(ax+b)}{a} + c  

#SPJ3

Similar questions