Math, asked by akeertana503, 23 days ago

sᴏʟᴠᴇ ʙʏ ᴄʀᴏss ᴍᴜʟᴛɪᴘʟɪᴄᴀᴛɪᴏɴ:

2x+3y=6
6x-5y=4

Answers

Answered by vishvacshah1105
3

Hope it will help you

Please like my question...

Attachments:
Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:2x + 3y = 6

and

\rm :\longmapsto\:6x - 5y = 4

Using Cross Multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  3 & \sf 6 & \sf 2 & \sf 3\\ \\ \sf  - 5 & \sf 4 & \sf 6 & \sf  - 5\\ \end{array}} \\ \end{gathered}

Now,

\rm :\longmapsto\:\dfrac{x}{12 - ( - 30)}  = \dfrac{y}{36 - 8}  = \dfrac{ - 1}{ - 10 - 18}

\rm :\longmapsto\:\dfrac{x}{12 + 30}  = \dfrac{y}{28}  = \dfrac{ - 1}{ - 28}

\rm :\longmapsto\:\dfrac{x}{42}  = \dfrac{y}{28}  = \dfrac{ 1}{ 28}

Taking first and third member, we get

\rm :\longmapsto\:\dfrac{x}{42}  = \dfrac{ 1}{ 28}

\bf\implies \:x = \dfrac{42}{28}  = \dfrac{3}{2}

Taking second and third member, we get

\rm :\longmapsto\: \dfrac{y}{28}  = \dfrac{ 1}{ 28}

\bf\implies \:y = \dfrac{28}{28}  = 1

Hence,

\purple{\bf :\longmapsto\:x = \dfrac{3}{2} }

and

 \purple{\bf :\longmapsto\:y =1}

Verification :-

Consider first equation,

\rm :\longmapsto\:2x + 3y = 6

On substituting the values of x and y, we get

\rm :\longmapsto\:2 \times  \dfrac{3}{2}  + 3 \times 1 = 6

\rm :\longmapsto\:3 + 3 = 6

\rm :\longmapsto\:6 = 6

Hence, Verified

Consider second equation,

\rm :\longmapsto\:6x - 5y = 4

On substituting the values of x and y, we get

\rm :\longmapsto\:6 \times  \dfrac{3}{2}  - 5 \times 1 = 4

\rm :\longmapsto\:9  - 5  = 4

\rm :\longmapsto\:4 = 4

Hence, Verified

Similar questions