Math, asked by namratabudhalkar0571, 7 hours ago

S. T (1+i)^2/1-i - (1-i) ^2/1+i is purely image no.​

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

to \: show =    \\  \frac{(1 + i) {}^{2} }{1 - i}  \:   +   \:  \frac{(1 - i) {}^{2} }{1 + i}  \:  \: is \: purely \: imaginary \\  \\ so \: here \\  \\  =  \frac{(1 + i) {}^{2} }{1 - i}  \:   +   \:  \frac{(1 - i) {}^{2} }{1 + i}  \\  \\  =  \frac{1 + i {}^{2}  + 2i}{1 - i}  \:   +  \frac{1 + i {}^{2} - 2i }{ 1 + i}  \\  \\  =  \frac{1 + ( - 1)  + 2i}{1 - i}  \:   +  \frac{1 + ( - 1) - 2i}{1 + i}  \\  \\  =  \frac{2i}{1 - i}  \:   +   \frac{ - 2i}{1 + i}  \\  \\  =  \frac{2i(1 + i)  +  2i(1 - i)}{(1 + i)(1 -i) }  \\  \\  =  \frac{2i + 2i {}^{2}  +  (2i - 2i {}^{2} ) }{1 - i {}^{2} }  \\  \\  =  \frac{2i + 2i {}^{2}   +  2i  -  2i {}^{2} }{1 - ( - 1)}  \\  \\  =  \frac{4i  }{1 + 1}  \\  \\  =  \frac{4i}{2}  \\  \\  = 2i \\  \\  = 2 \sqrt{ - 1}  \\  \\ which \: is \: purely \: imaginary \\  \\  \\ hence \: proved

Similar questions