Math, asked by aninditadeb612, 9 months ago

s-t= 3
s\2-t\3=6 find the value of t and s​

Answers

Answered by Brâiñlynêha
21

\huge\mathbb{SOLUTION:-}

\sf\underline{\blue{\:\:\:\:\:\:\:\: Given:-\:\:\:\:\:\:\:\:}}

\sf\:\:\:\:\bullet s-t= 3\:\:\:\:\:\:\:....... . ..(i)\\ \\ \sf\:\:\:\:\:\bullet \dfrac{s}{2}-\dfrac{t}{3}=6\:\:\:\:\:\:\:\:......... (ii)

Now

\sf\underline{\red{\:\:\:\:\:\:\:\: A.T.Q:-\:\:\:\:\:\:\:\:}}

\sf\bullet s=3+t..............(iii)\\ \\ \sf\leadsto Solve\:this \:\:\rightarrow \dfrac{s}{2}-\dfrac{t}{3}=6\\ \\ \sf\leadsto By\:taking\:L.C.M\\ \\ \sf\leadsto \dfrac{3s-2t}{6}=6\\ \\ \sf\leadsto 3s-2t= 6\times 6\\ \\ \sf\leadsto 3s-2t=36\\ \\ \sf\:\:\: put\:the\:value\:of\:s \\ \sf\implies which\:is \:\:(3+t)\\ \\ \sf\leadsto 3(3+t)-2t=36\\ \\ \sf\leadsto 9+3t-2t= 36\\ \\ \sf\leadsto 3t-2t=36-9\\ \\ \sf\leadsto t= 27

\underline{\bigstar{\boxed{\sf{t=27}}}}

\sf\:\:\:Now\:the\:value\:of\:s\\ \\ \sf\implies s-t=3\\ \\ \sf\implies s-27=3\\ \\ \sf\implies s= 27+3\\ \\\sf\implies s= 30

\underline{\bigstar{\boxed{\sf{s= 30\:\:and\:\:t=27}}}}

Answered by Anonymous
17

Answer:

value of s and t are 30 and 27 respectively.

Step-by-step explanation:

s - t = 3

=> s = 3 + t........(1)

(s/2) - (t/3) = 6

=> (3s - 2t)/6 = 6

=> 3s - 2t = 6 × 6

=> 3s - 2t = 36...........(2)

Put the value of (1) in (2)

=> 3(3+t) - 2t = 36

=> 9 + 3t - 2t = 36

=> t = 36 - 9

=> t = 27

Now, put t = 27 in (1)

=> s = 2 + 27

=> s = 30

_____________________

Verification :

Put the value of s and t in (1)

=> 30 = 3 + 27

=> 30 = 30

Therefore, value of s and t are 30 and 27 respectively.

Similar questions