Math, asked by xXMissBombXx, 2 months ago

Sᴏʟᴠᴇ:
 \frac{x - b - c}{a}   \:  \:  +  \frac{x - c - a}{c}  \:  \:  +  \frac{x - a - b}{c}  = 3
ᴡᴀɴᴛ ϙᴜᴀʟɪᴛʏ ᴀɴsᴡᴇʀs!!​

Answers

Answered by Anonymous
187

\LARGE\underline{\boxed{\red{ǫᴜᴇsᴛɪᴏɴ :-}}}

 \frac{x - b - c}{a} \: \: + \frac{x - c - a}{c} \: \: + \frac{x - a - b}{c} = 3,\:then\:find\:x

\LARGE\underline{\boxed{\pink{Sᴏʟᴜᴛɪᴏɴ :-}}}

  • \large{\tt{Rewrite\:\:3\:\:as\:\:1+1+1}}

\longmapsto\frac{(x - b - c)}{a} \: \: + \frac{(x - c - a)}{c} \: \: + \frac{(x - a - b)}{c} = 1+1+1

\longmapsto[ \frac{(x - b - c ) - 1}{a}]+ [\frac{(x - c - a) - 1}{b}]+[ \frac{(x - a - b)- 1}{c} ]=0

\longmapsto( \frac{x - b - c - a}{a}) + ( \frac{x - c - a - b}{b}) + ( \frac{x - a - b - c}{c}) = 0

  • Take out \large{\tt{(x-b-c-a)}} as common

\longmapsto(x - b - c - a) \:  \: [ \frac{1}{a}  +  \frac{1}{b} +   \frac{1}{c}  = 0 \: ]

\longmapsto(x - b - c - a) = 0 \: or \:  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} \neq \: 0  \\ ∴(\frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} \neq \: 0,given)

\longmapsto(x - b - c - a) = 0

\longmapsto∴ {\boxed{\red{x = a + b + c}}}

Hope it Helps uh Dear!! ❤

ᕼᗩᑭᑭY ᒪᗴᗩᖇᑎíᑎᘜ ☃️

Similar questions