Math, asked by Aakashdwivedi, 6 months ago

साइन थीटा इज इक्वल टू अंडर रूट 3 बाय टू दिन हाउ टू प्रूफ फॉर कॉस्ट टू थीटा माइनस कौस थीटा इक्वल टू माइनस वन​

Answers

Answered by varadad25
4

Question:

If \displaystyle{\sf\:\sin\:\theta\:=\:\dfrac{\sqrt{3}}{2}}, then prove that \displaystyle{\sf\:\cos\:(\:2\:\theta\:)\:-\:\cos\:\theta\:=\:-\:1}

Answer:

\displaystyle{\boxed{\red{\sf\:\cos\:(\:2\:\theta\:)\:-\:\cos\:\theta\:=\:-\:1\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\sin\:\theta\:=\:\dfrac{\sqrt{3}}{2}}

We have to prove that,

\displaystyle{\sf\:\cos\:(\:2\:\theta\:)\:-\:\cos\:\theta\:=\:-\:1}

\displaystyle{\sf\:LHS\:=\:\cos\:(\:2\:\theta\:)\:-\:\cos\:\theta}

We know that,

\displaystyle{\pink{\sf\:\cos\:(\:2\:\theta\:)\:=\:1\:-\:2\:\sin^2\:\theta}}

\displaystyle{\implies\sf\:\cos\:(\:2\:\theta\:)\:=\:1\:-\:2\:\times\:\left(\:\dfrac{\sqrt{3}}{2}\:\right)^2}

\displaystyle{\implies\sf\:\cos\:(\:2\:\theta\:)\:=\:1\:-\:\cancel{2}\:\times\:\dfrac{3}{\cancel{4}}}

\displaystyle{\implies\sf\:\cos\:(\:2\:\theta\:)\:=\:1\:-\:\dfrac{3}{2}}

\displaystyle{\implies\sf\:\cos\:(\:2\:\theta\:)\:=\:\dfrac{2\:-\:3}{2}}

\displaystyle{\implies\boxed{\blue{\sf\:\cos\:(\:2\:\theta\:)\:=\:-\:\dfrac{1}{2}}}}

Now, we know that,

\displaystyle{\pink{\sf\:\cos^2\:\theta\:=\:1\:-\:\sin^2\:\theta}}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:1\:-\:\left(\:\dfrac{\sqrt{3}}{2}\:\right)^2}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:1\:-\:\dfrac{3}{4}}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:\dfrac{4\:-\:3}{4}}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:\dfrac{1}{4}}

\displaystyle{\implies\boxed{\green{\sf\:\cos\:\theta\:=\:\dfrac{1}{2}}}}

Now,

\displaystyle{\sf\:LHS\:=\:\cos\:(\:2\:\theta\:)\:-\:\cos\:\theta}

\displaystyle{\implies\sf\:LHS\:=\:-\:\dfrac{1}{2}\:-\:\dfrac{1}{2}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{-\:1\:-\:1}{2}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{-\:\cancel{2}}{2}}

\displaystyle{\implies\sf\:LHS\:=\:-\:1}

\displaystyle{\sf\:RHS\:=\:-\:1}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\cos\:(\:2\:\theta\:)\:-\:\cos\:\theta\:=\:-\:1\:}}}}

Answered by Ayushsf2hindustan
7

Question:

साइन थीटा इज इक्वल टू अंडर रूट 3 बाय टू दिन हाउ टू प्रूफ फॉर कॉस्ट टू थीटा माइनस कौस थीटा इक्वल टू माइनस वन

Answer:

 \cos(2Φ)  -  \cosΦ =  - 1

Step-by-step explanation:

Please prefer the attachment

Attachments:
Similar questions