Math, asked by singhaneesh7996, 11 months ago

सीमाओं के मान प्राप्त कीजिए : \lim_{x\rightarrow \pi}\dfrac{\sin (\pi - x)}{\pi (\pi - x)}

Answers

Answered by amitnrw
0

1/π   \lim_{x\rightarrow \pi}\dfrac{\sin (\pi - x)}{\pi (\pi - x)} = \frac{1}{\pi}

Step-by-step explanation:

\lim_{x\rightarrow \pi}\dfrac{\sin (\pi - x)}{\pi (\pi - x)}

x = π  प्रयोग करने पर  

Sin(π - π) /π (π - π)

= Sin(0)/π(0)

= 0/0

परिभाषित नहीं

y = π - x

=> π = (x + y)

x → π

=> y → π - π

=> y → 0

\lim_{y\rightarrow0}\dfrac{\sin (y)}{\pi(y)}

Lim y → 0  Siny/y = 1

=  1/π

\lim_{x\rightarrow \pi}\dfrac{\sin (\pi - x)}{\pi (\pi - x)} = \frac{1}{\pi}

और पढ़ें

सीमाओं के मान प्राप्त कीजिए :  [tex]\lim_{x\rightarrow3}\dfrac{x^4 - 81

brainly.in/question/15778085

सीमाओं के मान प्राप्त कीजिए

brainly.in/question/15778083

Similar questions