Math, asked by ALevelNJB7429, 11 months ago

सीमाओं के मान प्राप्त कीजिए : \lim_{x\rightarrow0}\dfrac{\sin ax}{bx}

Answers

Answered by Anonymous
2

Answer:

\large\boxed{\sf{\dfrac{a}{b}}}

Step-by-step explanation:

\lim_{x\rightarrow0} \frac{ \sin(ax) }{ \sin(bx) }  \\  \\  =\lim_{x\rightarrow0} \frac{ \sin(ax) }{ax}  \times ax \times  \frac{1}{ \frac{ \sin(bx) }{bx}  \times bx}  \\  \\  = 1 \times ax \times  \frac{1}{bx}  \\  \\  =  \frac{a}{b}

Concept Map :-

  • \lim_{x\rightarrow0} \dfrac{\sin x}{x}= 1
Answered by shadowsabers03
0

Question:-

\quad

Evaluate \displaystyle\sf {\lim_{x\to0}\dfrac {\sin (ax)}{bx}.}

\quad

Answer:-

\quad

\displaystyle\large\boxed {\sf {\lim_{x\to0}\dfrac {\sin (ax)}{bx}=\dfrac {a}{b}}}

\quad

Solution:-

\quad

We know that,

\quad

  • \displaystyle\sf {\lim_{x\to0}\dfrac {\sin x}{x}=1\quad\quad\dots(1)}

\quad

Then,

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to 0}\dfrac {\sin (ax)}{bx}=\lim_{x\to 0}\dfrac {a\sin (ax)}{abx}}

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to 0}\dfrac {\sin (ax)}{bx}=\lim_{x\to 0}\dfrac {a\sin (ax)}{b\cdot ax}}

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to 0}\dfrac {\sin (ax)}{bx}=\dfrac {a}{b}\lim_{x\to 0}\dfrac {\sin (ax)}{ax}\quad\quad\dots(2)}

\quad

Well, as \displaystyle\sf {x\longrightarrow0,\ ax\longrightarrow 0.}

\quad

Then (2) becomes,

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to 0}\dfrac {\sin (ax)}{bx}=\dfrac {a}{b}\lim_{ax\to 0}\dfrac {\sin (ax)}{ax}}

\quad

By (1),

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to 0}\dfrac {\sin (ax)}{bx}=\dfrac {a}{b}\cdot1}

\quad

\displaystyle\longrightarrow\sf {\underline {\underline {\lim_{x\to 0}\dfrac {\sin (ax)}{bx}=\dfrac {a}{b}}}}

Similar questions