Math, asked by Rishabh8906, 1 year ago

सूत्र cos (A + B) = cos A .cos B – sin A .sin B लेकर cos 75º का मान ज्ञात कीजिए।

Answers

Answered by Anonymous
93

Answer:

\large  \bold\red {\frac{  (\sqrt{3} - 1) }{2 \sqrt{2} } }

Step-by-step explanation:

Given,

  • cos (A + B) = cos A .cos B – sin A .sin B

Now,

To find the value of cos 75

Lets assume that,

  • A = 45°
  • B = 30°

Therefore,

We have,

  =  > \cos(75)  =  \cos(45 + 30)  \\  =  >  \cos(75)  =  \cos(45)  \cos(30)  -  \sin(45)  \sin(30)

But,

We know that,

  •  \cos(45)  =   \frac{1}{ \sqrt{2} }
  •  \sin(45)  =  \frac{1}{ \sqrt{2} }
  •  \cos(30)  =  \frac{ \sqrt{3} }{2}
  •  \sin(30)  =  \frac{1}{2}

Therefore,

Putting the respective values,

We get,

 =  >  \cos(75)  = ( \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2})  - ( \frac{1}{ \sqrt{2} }  \times  \frac{1}{2} ) \\  \\  =  >  \cos(75)  =  \frac{ \sqrt{3} }{2 \sqrt{2} }  -  \frac{1}{2 \sqrt{2} }  \\  \\  =  >  \cos(75)  =  \large  \boxed {  \green{\frac{  (\sqrt{3} - 1) }{2 \sqrt{2} } }}

Answered by RvChaudharY50
52

Question :------ we have To find value of cos 75° .

using cos (A + B) = cos A .cos B – sin A .sin B ?

values to be used :-----

  • cos30° = √3/2
  • cos 45° = 1/√2
  • sin30° = 1/2
  • sin45° = 1/√2

Solution :------

Formula is already Given in Question , so we just have to Put value and solve it,

Let A = 45° , B = 30°

Cos(A+B) = Cos(75°)

cos(A+B) = cos(45+30)

Now,

Cos(45+30) = cos45°cos30° - sin45°sin30°

Further ,

 (\frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2})  - ( \frac{1}{ \sqrt{2} }  \times  \frac{1}{2} ) \\  \\  \frac{ \sqrt{3} }{2 \sqrt{2} }  -  \frac{1}{2 \sqrt{2} }  \\  \\  \frac{( \sqrt{3} - 1) }{2 \sqrt{2} }  \times  \frac{2 \sqrt{2} }{2 \sqrt{2} }  \\  \\  \frac{ \cancel2( \sqrt{6} -  \sqrt{2} ) }{ \cancel8}  \\  \\  \frac{ \sqrt{6} -  \sqrt{2}  }{4}

( आशा है कि आपकी सहायता हुई ll )

Similar questions