Math, asked by nehab6090, 25 days ago

सिद्ध कीजिए कि:
19. (1- tan A)2 + (1 - cot A)2 = (sec A - cosec A)2.​

Answers

Answered by SparklingBoy
53

LHS :

  \sf  {(1  -  tanA) }^{2}  +  {(1 - cot A)}^{2}  \\  \\  \sf = (1 +  {tan}^{2}A  - 2tanA)  \\  \sf+ ( 1 +  {cot}^{2} A - 2cotA) \\  \\  \sf =  {sec}^{2} A - 2tanA +  {cosec}^{2} A - 2cotA \\  \{  \bf\because1 +  {tan}^{2} A = sec {}^{2} A \\ \bf and1 +  {cot} {}^{2}  A =  {cosec}^{2} A \} \\  \\  = \sf  {sec}^{2} A +  {cosec}^{2} A - 2( tanA + cotA) \\  \\  =  \sf {sec}^{2} A +  {cosec}^{2} A - 2( \frac{sinA }{cosA }+  \frac{cosA}{sinA} ) \\  \\  \sf =  {sec}^{2} A +  {cosec}^{2} A - 2( \frac{ {sin}^{2} A +  {cos}^{2}A)}{cosA \: sin A }  \\  \\  =  \sf {sec}^{2}  +  {cosec}^{2} A - 2( \frac{1}{sinA \: cos A  } )\\\{\bf\because sin^2\theta+cos^2\theta=1\} \\  \\  \sf =  {sec}^{2} A +  {cosec}^{2} A - 2secA \: cosecA \\\\ \{\bf\because\frac{1}{sin\theta}=cosec\theta\\ \bf and\:\:\frac{1}{cos\theta}=sec\theta\} \\  \\  \sf = (secA - cosecA) {}^{2}

= RHS

Answered by TheRascle
14

Given :-

It is given to prove that,

 \sf(1- tan A {)}^{2}  + (1 - cot A {)}^{2}  = (sec A - cosec A {)}^{2}

Solution :-

 \sf \: (1- tan A {)}^{2} + (1 - cot A {)}^{2}

\sf \to \: (1 +tan^{2}A - 2tanA) + (1+cot^{2}A-2cotA)

 \sf \to \: sec^{2}A - 2tanA + cosec^{2}A - 2cotA

 \sf \to \:  {sec}^{2} A + cose {c}^{2} A - 2 (\frac{si {n}^{2} A+ co {s}^{2} A}{cosA \:  \: sinA}) \\

 \sf \to \: se {c}^{2}  +  cose {c}^{2} A - 2( \frac{1}{sinA \:  \: cosA}) \\

 \sf \to \: se {c}^{2} A + cose {c}^{2} A - 2secA \:  \: cosecA

 \bf \red { = (secA \:  -  \: cosecA {)}^{2} }

Hence,

 \sf \green{(1- tan A {)}^{2}  + (1 - cot A {)}^{2}  = (sec A - cosec A {)}^{2} }

 \\

 \fbox{ \tt{@TheRascle}}

Similar questions