सिद्ध कीजिए कि किसी चक्रीय चतुर्भुज के अन्तः कोणों के अध्द्कों द्वारा बना हुआ चतुर्भुज भी चक्रिय होता है।
Answers
Step-by-step explanation:
bhai hindi ni aati itni lkl
The figure formed by joining the mid-points of the mid-points of the consecutive sides of a quadrilateral is Parallelogram
Given, ABCD is a parallelogram. Since, E and F are midpoints of the sides AB and CD respectively,
∴AE=BE=DF=CF
Here, for △HEB and △FHC,
∠EHB=∠FHC [∵verticallyoppositeangles]
∠HFC=∠HBE [Alternate interior angle so the lines AB∥CD and BF is transverse]
BE=CF
∴△HEB≅△FHC [byAngle−Angle−Sideproperty]
In quadrilateral AECF,
AE=CF
and AE∥CF(asAB∥CD)
∴AECF is a parallelogram
[in a quadrilateral ,if apair of opposite sidesis equal and parallel then it is a parallelogram]
So, EC∥AF
⇒EH∥GF ----------(1)
In quadrilateral BEDF,
BE=DF
and BE∥DF (a sAB∥CD)
∴BEDF is parallelogram
So, BF∥ED
⇒HF∥GE -----------(2)
From (1) and (2) we get,
GEHF is a parallelogram.
p.s* sorry for your answer in English hope u can understand it.