सिद्ध कीजिए कि रूट 7 एक अपरिमेय संख्या है
Answers
Answered by
6
Answer:
समीकरण (i ) तथा (ii ) से हम कह सकते है कि a और b का कम से कम एक गुणनखंड 3 है । परन्तु यह इस तथ्य का विरोधाभास करता है कि a और b सह-अभाज्य है। इसका अर्थ यह है कि हमारी परिकल्पना सही नहीं है। अतः √3 एक अपरिमेय संख्या है।
this is not right answer
Answered by
4
(。◕‿◕。)
Answer:
- Given : √7
- To prove: √7 is an irrational number.
- Proof: Let us assume that √7 is a rational number.
- So it t can be expressed in the form p/q where p,q are co-prime integers and q≠0
√7 = p/q
- Here p and q are coprime numbers and q ≠ 0
- Solving √7 = p/q
- On squaring both the side we get,
=> 7 = (p/q)2
=> 7q2 = p2……..(1)
p2/7 = q2
- So 7 divides p and p and p and q are multiple of 7.
⇒ p = 7m
⇒ p² = 49m² …………..(2)
- From equations (1) and (2), we get,
7q² = 49m²
⇒ q² = 7m²
⇒ q² is a multiple of 7
⇒ q is a multiple of 7
- Hence, p,q have a common factor 7. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number
√7 is an irrational number.
Similar questions