सिद्ध कीजिए कि- sin{(n+1)A}.sin{(n+2)A}+cos{(n+1)A}.cos{(n+2)A}=cosA.
Answers
Answered by
3
Answer:
CosA
Step-by-step explanation:
Prove that -
Sin{(n+1)A}.Sin{(n+2)A} + Cos{(n+1)A}.Cos{(n+2)A} = CosA
L.H.S.
= Sin{(n+1)A}.Sin{(n+2)A} + Cos{(n+1)A}.Cos{(n+2)A}
= Sin(nA+A).Sin(nA+2A) + Cos(nA+A).Cos(nA+2A)
= Cos(nA+2A).Cos(nA+A) + Sin(nA+2A).Sin(nA+A)
Using Formula-
Cos(A+B) = CosA.CosB - SinA.SinB
So, Cos(nA+2A).Cos(nA+A) + Sin(nA+2A).Sin(nA+A)
= Cos{(nA+2A) - (nA+A)}
= Cos(nA + 2A - nA - A)
= CosA
= R.H.S.
Hence Proved
Answered by
2
Answer:
please mark as a brainliest answer
Step-by-step explanation:
.
Attachments:
Similar questions