सिद्ध कीजिए कि sinA(1 + tanA) + cosA (1 + cotA) = secA + cosecA
Answers
Answered by
0
Answer:
Just proof LHS =RHS
Mark me as brainiest
Step-by-step explanation:
LHS :
=[SinA(1+tanA)] +[cosA(1+cotA)]
=[SinA(1+SinA/CosA)] +[cosA(1+cosA/sinA)]
=[SinA(cosA+sinA)]/cosA] +[cosA(sinA+cosA) /sinA]
=(SinA+cosA) (sinA/cosA+cosA+sinA)
=(SinA+cosA) [(sin²A+cos²A) /SinAcosA]
=SinA/sinAcosA+cosA/sinAcosA
=1/cosA+ 1/sinA
=SecA+cosecA
=RHS
Answered by
0
Step-by-step explanation:
your answer attached in the photo
Attachments:
Similar questions