Math, asked by rajesh240, 1 year ago

सिद्ध कीजिए कि त्रिभुज के तीनों कोणों का योगफल दो समकोण के बराबर होता हैं

Answers

Answered by vikram991
7
here is your answer

त्रिभुज (Triangle), तीन शीर्षों और तीन भुजाओं वाला एक बहुभुज (Polygon) होता है। यह ज्यामिति की मूल आकृतियों में से एक है। शीर्षों A, B, और C वाले त्रिभुज को {\displaystyle \triangle ABC} {\displaystyle \triangle ABC} द्वारा दर्शाया जाता है। E यूक्लिडियन ज्यामिति में कोई भी तीन असंरेखीय बिन्दु, एक अद्वितीय त्रिभुज का निर्धारण करते हैं और साथ ही, एक अद्वितीय तल (यानी एक द्वि-विमीय यूक्लिडियन समतल) का भी। दूसरे शब्दों में, तीन सरल रेखाओं से घिरी बंद आकृति को त्रिभुज या त्रिकोण कहते हैं। त्रिभुज में तीन भुजाएं और तीन कोण होते हैं। त्रिभुज सबसे कम भुजाओं वाला बहुभुज है। किसी त्रिभुज के तीनों आन्तरिक कोणों का योग सदैव 180° होता है। इन भुजाओं और कोणों के माप के आधार पर त्रिभुज का विभिन्न प्रकार से वर्गीकरण किया जाता है।

त्रिभुज असमिका(Triangle Inequality) बताती है कि त्रिभुज की किन्हीं दो भुजाओं की लम्बाइयों का योग, तीसरी भुजा की लंबाई से अधिक या बराबर होना चाहिए। केवल एक पतित त्रिभुज में, किन्हीं दो भुजाओं की लम्बाइयों का योग, तीसरी भुजा की लंबाई के बराबर होता है, जिसमें तीनों शीर्ष संरेखीय होते हैं। त्रिभुज की दो भुजाओं की लम्बाइयों के योग का, तीसरी भुजा की लंबाई से कम होना संभव नहीं है। तीन दी गईं सकारात्मक भुजाओं वाला त्रिभुज बनेगा यदि वे भुजाएँ, त्रिभुज असमिका को संतुष्ट करती हैं।
Answered by moink901502
0

Answer:

no answer everybody your answer

Similar questions