Math, asked by rinkigarg2367, 11 months ago

सिद्ध कीजिए कि tanA/(1 – cot A) + cotA/(1 – tanA) = 1 + secA. cosecA

Answers

Answered by manojkhatri111222
0

Answer:

this is only your answer

Attachments:
Answered by RvChaudharY50
65

\LARGE\underline{\underline{\sf \red{T}\blue{o}\:\green{F}\orange{i}\pink{n}\red{d}:}}

tanA/(1 – cot A) + cotA/(1 – tanA) = 1 + secA. cosecA

Formula To be used :-----

  • CotA = 1/TanA
  • (a³-b³) = (a-b)(a²+b²+ab)
  • cotA = cosA/sinA
  • tanA = sinA/cosA
  • sin²A+cos²A = 1

\LARGE\underline{\underline{\sf \red{S}\blue{o}\green{l}\orange{u}\pink{t}\purple{i}\orange{o}\red{n}:}}

See my solution in easiest way :--------

______________________________

\red{\bold{Solving\:LHS,,}}

 \frac{ \tan(a) }{1 - cot(a) }  +  \: \frac{cot(a)}{1 -  \tan(a)  }   \\  \\  \\  \\  \frac{ \tan(a) }{1 -  \frac{1}{ \tan(a) } }  +  \frac{ \frac{1}{ \tan(a) } }{1 -  \tan(a) }  \\  \\  \frac{ \tan^{2}(a )  }{ \tan(a) - 1 }  -  \frac{1}{ \tan(a)( \tan(a) - 1)  }  \\  \\  \frac{ \tan^{3} (a)  - 1}{\tan(a)( \tan(a) - 1)}  \\  \\  \frac{ \cancel{( \tan(a) - 1)}(tan^{2}(a) +  \tan(a)   + 1) }{\tan(a) \cancel{( \tan(a) - 1)}}  \\  \\  \frac{tan^{2}(a)}{ \tan(a) }  +  \frac{ \tan(a) }{ \tan(a) }  +  \frac{1}{ \tan(a) }  \\  \\  \tan(a)  + cot(a) + 1 \\  \\  (\frac{ \sin(a) }{ \cos(a) }  +  \frac{ \cos(a) }{ \sin(a) } ) + 1 \\  \\  (\frac{\sin^{2} (a) +  {cos}^{2} (a) }{ \sin(a) \times  \cos(a)  } ) + 1 \\  \\ 1 +  \sec(a)  \csc(a)

\red{\bold{\underline{\underline{LHS=RHS}}}}

______________________________

\huge\underline\mathfrak\green{Hope\:it\:Helps\:You}

Similar questions