Math, asked by Tanmayrocket6426, 1 year ago

सिद्ध कीजिए: (\cos x - \cos y)^{2} + (\sin x - \sin y)^{2} = 4\sin^2 \dfrac{x-y}{2}

Answers

Answered by ibzala
0

L.H.S =x+y=90 ,x=90-y ,y=90-x

=( cosx-cosy)^2+(sinx+siny)^2

=(cosx+sin(90-y))^2+(sinx+cos(90-y))^2

=(cosx+sinx)^2+(sinx+cosx)^2

=1+1

=2

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

सिद्ध करना है -

(\cos x - \cos y)^{2} + (\sin x - \sin y)^{2} = 4\sin^2 \dfrac{x-y}{2}

L.H.S.  =(\cos x - \cos y)^{2} + (\sin x - \sin y)^{2}

   

चूँकि हम जानते है कि -

     cosA-cosB=-2sin\frac{A+B}{2} sin\frac{A-B}{2} \\sinA-sinB=2cos\frac{A+B}{2} sin\frac{A-B}{2}

∴L.H.H.  =[-2sin\frac{x+y}{2} sin\frac{x-y}{2}]^{2}+[2cos\frac{x+u}{2} sin\frac{x-y}{2}]^{2}

          =4sin^{2}\frac{x+y}{2} sin^{2}\frac{x-y}{2} +4cos^{2}\frac{x+y}{2} sin^{2}\frac{x-y}{2}

        =4sin^{2}\frac{x-y}{2} [sin^{2}\frac{x+y}{2}+ cos^{2}\frac{x+y}{2} ]

       =4sin^{2}\frac{x-y}{2} .1

       =4sin^{2}\frac{x-y}{2}

       = R.H.S.

Similar questions