Math, asked by Palepuvijaya5058, 1 year ago

सिद्ध कीजिए: sin 3x + \sin 2x - \sin x = 4\sin x \cos \,\dfrac{x}{2} \cos\,\dfrac{3x}{2}

Answers

Answered by kishan2247
0

we will get 4sinxcosx/2

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

सिद्ध  करना है-

sin 3x + \sin 2x - \sin x = 4\sin x \cos \,\dfrac{x}{2} \cos\,\dfrac{3x}{2}

L.H.S. =sin 3x + \sin 2x - \sin x

         = ( sin3x - sinx ) + sin2x

         =2cos\frac{3x+x}{2} sin\frac{3x-x}{2} +sin2x

       =2cos2xsinx+sin2x

        =2cos2xsinx+2sinxcosx

        =2sinx(cos2x+cosx)

        =2sinx[2cos\frac{2x+x}{2} cos\frac{2x-x}{2} ]

        =2sinx.2cos\frac{3x}{2} cos\frac{x}{2}

        =4sinx cos\frac{x}{2} cos\frac{3x}{2}

        = R.H.S.

Similar questions