सिद्ध करे कि रूट 2 एक अपरिमेय संख्या है
Answers
Answer:
The proof is explained step-wise below :
Step-by-step explanation:
To prove : √2 is irrational
Proof : We will prove this by using contradiction
Assume √2 is rational that is it can be expressed as a rational fraction of the form :
where a and b are two relatively prime integers.
Since 2·a² is even ⇒ b² must be even
And since b² is even ⇒ b is even
Let b = 2·c
⇒ 4·c² = 2·a²
⇒ a² = 2·c²
Since 2·c² is even ⇒ a² is even,
And since a² is even ⇒ a is even
However, two even numbers cannot be relatively prime, so √2 cannot be expressed as a rational fraction. So, we get a contradiction and thus our assumption is wrong.
Hence, √2 is irrational number.
Hence Proved.
Answer:
प्रश्न 1. सिद्ध कीजिए √2 अपरिमेय संख्या है।
उत्तर- यदि सम्भव हो, तो माना √2 एक परिमेय संख्या है।
तब मान √2 = m / n, H.C.F. (m, n) = 1, n≠ 0
⇒ m = √2n
⇒ m2 = 2n2 ….(1)
⇒ 2n2 एक समपूर्णाक है।
⇒ m2 एक समपूर्णांक है।
⇒ m एक समपूर्णांक है। ....(A)
= m = 2q, q∈ z ....(2)
(1) व (2) से
4q2 = 2n2
⇒ n2 = 2q2
⇒ n2 एक समपूर्णांक है।
⇒ n एक समपूर्णांक है। ....(B)
(A) तथा (B) ⇒ m तथा n दोनों ही समपूर्णांक है।
⇒ H.C.F. (m, n) # 1
अतः जो कि विरोधाभास है परिमेय होने का अतः √2 एक अपरिमेय संख्या है।