Math, asked by vijayrockzz2769, 1 year ago

सिद्ध करा: tan⁴θ + tan²θ = sec⁴θ - sec²θ

Answers

Answered by shruty124
1

I hope it will help you!!

Attachments:
Answered by Tomboyish44
16

To prove:

⇒ tan⁴θ + tan²θ = sec⁴θ - sec²θ

RHS:

⇒ sec⁴θ - sec²θ

We know that, sec²θ = tan²θ + 1.

⇒ sec⁴θ - [tan²θ + 1]

⇒ [sec²θ]² - tan²θ - 1

⇒ [tan²θ + 1]² - tan²θ - 1

Using (a + b)² = a² + b² + 2ab we get:

⇒ (tan²θ)² + (1)² + 2(tan²θ)(1) - tan²θ - 1

⇒ tan⁴θ + 1 + 2tan²θ - tan²θ - 1

⇒ tan⁴θ + tan²θ

LHS = RHS

Hence Proved.

____________________

Trigonometric identities:

⇒ sin²θ + cos²θ = 1

⇒ sec²θ - tan²θ = 1

⇒ cosec²θ - cot²θ = 1

Trigonometric reciprocal ratios:

⇒ 1/sinθ = cosecθ

⇒ 1/cosθ = secθ

⇒ 1/tanθ = cotθ

Trigonometric complementary angles:

⇒ sinθ = cos[90° - θ]

⇒ cosθ = sin[90° - θ]

⇒ tanθ = cot[90° - θ]

⇒ cotθ = tan[90° - θ]

⇒ secθ = cosec[90° - θ]

⇒ cosecθ = sec[90° - θ]

Similar questions