सिद्ध करा: tan⁴θ + tan²θ = sec⁴θ - sec²θ
Answers
Answered by
1
I hope it will help you!!
Attachments:
Answered by
16
To prove:
⇒ tan⁴θ + tan²θ = sec⁴θ - sec²θ
RHS:
⇒ sec⁴θ - sec²θ
We know that, sec²θ = tan²θ + 1.
⇒ sec⁴θ - [tan²θ + 1]
⇒ [sec²θ]² - tan²θ - 1
⇒ [tan²θ + 1]² - tan²θ - 1
Using (a + b)² = a² + b² + 2ab we get:
⇒ (tan²θ)² + (1)² + 2(tan²θ)(1) - tan²θ - 1
⇒ tan⁴θ + 1 + 2tan²θ - tan²θ - 1
⇒ tan⁴θ + tan²θ
LHS = RHS
Hence Proved.
____________________
Trigonometric identities:
⇒ sin²θ + cos²θ = 1
⇒ sec²θ - tan²θ = 1
⇒ cosec²θ - cot²θ = 1
Trigonometric reciprocal ratios:
⇒ 1/sinθ = cosecθ
⇒ 1/cosθ = secθ
⇒ 1/tanθ = cotθ
Trigonometric complementary angles:
⇒ sinθ = cos[90° - θ]
⇒ cosθ = sin[90° - θ]
⇒ tanθ = cot[90° - θ]
⇒ cotθ = tan[90° - θ]
⇒ secθ = cosec[90° - θ]
⇒ cosecθ = sec[90° - θ]
Similar questions