Math, asked by mukultanwar2603, 1 year ago

सभी x,y \in N के लिए f(x +y) = f(x) f(y) को संतुष्ट करता हुआ f एक ऐसा फलन है।
कि f(1) = 3 एवं \sum_{x=1}^{n} f(x) = 120 तो n का मान ज्ञात कीजिए।

Answers

Answered by poonambhatt213
0

Answer:

Step-by-step explanation:

यह दिया गया है कि,

सभी x,y ∈ N के लिए  f ( x + y ) = f (x)  * f (y)     ...(1)

f(1) = 3

समीकरण ( 1 ) में x = y = 1 लेते हुऐ, हमारे पास है  

f ( 1 + 1 ) = f ( 2 ) = f ( 1 ) f ( 1 ) = 3 * 3 = 9 = 3^2

उसी प्रकार,

f (3) = f ( 1 + 2 ) = f ( 1 ) f ( 2 ) = 3 * 9 = 27 = 3^3

f (4) = f ( 1 + 3 ) = f (1) f (3) = 3 * 27 = 81 = 3^4

∴ f (1), f (2), f(3), ..., अर्थात् 3, 9, 27, ..., प्रथम पद और सामान्य अनुपात जो 3 बराबर है उन दोनों के साथ गुणोत्तर श्रेणी बनाता है |  

अब,  ∑_{x =1}^{n} f (x) = 120

=> f (1) + f (2) + f (3) + ...+ f (n) = 120

=> 3 + 3^2 + 3^3 + ... + 3^n = 120

=> S_n = 3 (3^n - 1 ) / 3 -1 = 120

=> 3 ( 3^n - 1 ) / 2 = 120

=> 3 ( 3^n - 1 ) = 240

=> 3^n - 1 = 80

=> 3^n = 81

=> 3^n = 3^4

=> n = 4.

इसप्रकार, n का मान 4 है |    

   

Answered by amitnrw
0

n का मान = 4  यदि \sum_{x=1}^{n} f(x) = 120 f(x + y)  = f(x).f(y) f(1) = 3

Step-by-step explanation:

f(x + y)  = f(x).f(y)

f(1) = 3

x = 1 , y = 1

=> f(1 + 1) = f(1).f(1)

=> f(2) = 3 * 3

=> f(2) = 9

f(1 + 2) = f(1).f(2)

=> f(3) = 3 * 9

=> f(3) = 27

f(4) = f(2 + 2)  = f(2).f(2) = 9 * 9  = 81

f(4) = f(1 + 3) = f(1). f(3) = 3 * 27 = 81

3 , 9 , 27  , 81

3¹ , 3² , 3³ , 3⁴

aₙ = 3ⁿ

\sum_{x=1}^{n} f(x) = 120

=> 3  + 9   + 27 + 81  + ...........................3ⁿ  = 120

Sₙ = a(rⁿ - 1)/(r - 1) = 120

=> 3(3ⁿ - 1)/(3 - 1) = 120

=> (3ⁿ - 1)/2 = 40

=> 3ⁿ -  1 = 80

=> 3ⁿ = 81

=> 3ⁿ = 3⁴

=> n = 4

n का मान = 4

और पढ़ें

x के किस मान के लिए संख्याएँ - \dfrac{2}{7},\,x,\,-\dfrac{7}{2} गुणोत्तर श्रेणी में हैं

brainly.in/question/9228862

मान ज्ञात कीजिए \sum_{k=1}^{11} (2 + 3^k))

brainly.in/question/9228853

brainly.in/question/9240409

Similar questions