Math, asked by ritikdalwani9133, 10 months ago

Sachin invested in a national saving in the first year he invested rupees 500 in the second year rupees 900 and so on find the total amount that he invested i 22 years​

Answers

Answered by BrainlyConqueror0901
57

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Total\:amount=1,03,400\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   : \implies  \text{First \: year \: investment}( a_{1})  = 500\:rupees\\  \\  : \implies  \text{Second \: year \: investment}( a_{2})  = 900\:rupees\\  \\    : \implies  \text{Time(n) = 22} \\  \\   : \implies  \text{Common \: difference (d)= 400} \\  \\ \red {\underline \bold{To \: Find: }}   \\     : \implies  \text{Total \: amount \: in \: 22 \: years}( S_{22}) = ?

• According to given question :

 :  \implies  S_{n} =  \frac{n}{2} (2a + (n - 1) \times d) \\  \\   : \implies  S_{22} =  \frac{22}{2} (2 \times 500 + (22 - 1) \times 400) \\  \\   : \implies S_{22} =11 \times (1000 + 8400) \\  \\  : \implies S_{22} =11 \times 9400 \\  \\  \green{ : \implies S_{22} = \text{53400 \: rupees}} \\  \\   \green{\therefore  \text{Total \: amount \: invested \: in \: 22 \: years = 1;03,400 \: rupees}}

Answered by Anonymous
26

Answer:

☆ Total Amount = 1,03,400

Step-by-step explanation

Using formula of sum of nth terms.

Sn = n/2[2a+(n-1)d]

• a=500

• d=400

• n=22

=) Sn = 22/2[2 × 500 + (22-1) × 400]

=) Sn = 11 × (1000 + 8400 )

=) Sn = 11 × 9400

=) Sn = 1,03,400 rupees

therefore Total amount invested at the end of 22 years is 1,03,400 rupees

Similar questions