Hindi, asked by tasneembommagatta, 4 months ago

sajata ka
samanarthak shabd


Answers

Answered by alov00722
2

Answer:

Correction in (Q1):

In the figure, not drawn to scale, TF is a tower. The elevation of T from A is x°, where tan x = 2/5 and AF = 200m. The elevation of T from B, where AB = 80m, is y°. Calculate:

(i) The height of the tower TF.

(ii) The angle y, correct to the nearest degree.

Solution:

According to the question:

\Longrightarrow \rm tanx = \dfrac{2}{5}⟹tanx=

5

2

We know that:

\Longrightarrow \rm tanx = \dfrac{Side \ opposite \ to \ x}{Side \ adjacent \ to \ x}⟹tanx=

Side adjacent to x

Side opposite to x

\Longrightarrow \rm tanx = \dfrac{TF}{AF}⟹tanx=

AF

TF

Substitute tanx = 2/5 above.

\Longrightarrow \rm \dfrac{2}{5} = \dfrac{TF}{AF}⟹

5

2

=

AF

TF

\Longrightarrow \rm \dfrac{2}{5} = \dfrac{TF}{200}⟹

5

2

=

200

TF

\Longrightarrow \rm \dfrac{2 \times 200}{5} = TF⟹

5

2×200

=TF

\Longrightarrow \rm 2 \times 40 = TF⟹2×40=TF

\Longrightarrow \rm{TF = 80 \ meters.}⟹TF=80 meters.

∴ (i) The height of the tower is 80 meters.

In ΔTBF:

\Longrightarrow \rm tany = \dfrac{Side \ opposite \ to \ y}{Side \ adjacent \ to \ y}⟹tany=

Side adjacent to y

Side opposite to y

\Longrightarrow \rm tany = \dfrac{TF}{BF}⟹tany=

BF

TF

\Longrightarrow \rm tany = \dfrac{80}{AF - AB}⟹tany=

AF−AB

80

\Longrightarrow \rm tany = \dfrac{80}{200 - 80}⟹tany=

200−80

80

\Longrightarrow \rm tany = \dfrac{80}{120}⟹tany=

120

80

\Longrightarrow \rm tany = \dfrac{8}{12}⟹tany=

12

8

\Longrightarrow \rm tany = \dfrac{2}{3}⟹tany=

3

2

\Longrightarrow \rm y = tan^{-1} \times \dfrac{2}{3} \ degrees.⟹y=tan

−1

×

3

2

degrees.

or

\Longrightarrow \rm y \approx 34^{\circ}⟹y≈34

∴ The angle y, correct to the nearest degree is 34°.

_____________________

(Q2) 'A' can do a piece of work in x days and B can do it in (x + 16) days. If both start working together, they can do it in 15 days. Find 'x'.

Solution:

\Longrightarrow \sf Work \ done \ by \ 'A' = \dfrac{1}{Time \ taken \ in \ days}⟹Work done by

A

=

Time taken in days

1

\Longrightarrow \sf Work \ done \ by \ 'A' = \dfrac{1}{x}⟹Work done by

A

=

x

1

\Longrightarrow \sf Work \ done \ by \ 'B' = \dfrac{1}{Time \ taken \ in \ days}⟹Work done by

B

=

Time taken in days

1

\Longrightarrow \sf Work \ done \ by \ 'A' = \dfrac{1}{x + 16}⟹Work done by

A

=

x+16

1

If both of them work together, they can finish the work in 15 days.

\Longrightarrow \sf Work \ done \ by \ 'A' + Work \ done \ by \ 'B' = \dfrac{1}{No: \ of \ days \ taken}⟹Work done by

A

+Work done by

B

=

No: of days taken

1

\Longrightarrow \sf \ \dfrac{1}{x} + \dfrac{1}{x + 16} = \dfrac{1}{15}⟹

x

1

+

x+16

1

=

15

1

Take LCM:

\Longrightarrow \sf \ \dfrac{x + 16 + x}{x(x + 16)} = \dfrac{1}{15}⟹

x(x+16)

x+16+x

=

15

1

\Longrightarrow \sf \ \dfrac{2x + 16}{x^2 + 16x} = \dfrac{1}{15}⟹

x

2

+16x

2x+16

=

15

1

Cross multiply:

\Longrightarrow \sf 15(2x + 16) = x^2 + 16x⟹15(2x+16)=x

2

+16x

\Longrightarrow \sf 30x + 240 = x^2 + 16x⟹30x+240=x

2

+16x

\Longrightarrow \sf x^2 + 16x - 30x - 240 = 0⟹x

2

+16x−30x−240=0

Split the middle term:

\Longrightarrow \sf x^2 - 14x - 240 = 0⟹x

2

−14x−240=0

Sum ---: -14

Product ---: -240

Split ---: 10 × -24

\Longrightarrow \sf x^2 + 10x - 24x - 240 = 0⟹x

2

+10x−24x−240=0

\Longrightarrow \sf x(x + 10) - 24(x + 10) = 0⟹x(x+10)−24(x+10)=0

\Longrightarrow \sf (x - 24) (x + 10) = 0⟹(x−24)(x+10)=0

Compare both the roots/solutions with zero.

Case I

\Longrightarrow \sf x -24 = 0⟹x−24=0

\Longrightarrow \sf x = 24⟹x=24

Therefore, x = 24.

Case II

\Longrightarrow \sf x + 10 = 0⟹x+10=0

\Longrightarrow \sf x = -10⟹x=−10

This is an invalid case as time cannot be negative. therefore x ≠ 10.

Hence the value of 'x' is 24.

Answered by SairajSomase
0

Answer:

bigadta

Explanation:

follow me please

Similar questions