Physics, asked by ascian, 1 month ago

Salma takes 20 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of 5 m/s, calculate the distance between her house and the school. (this is a class 7th question)

Answers

Answered by Anonymous
14

Answer:

Provided that:

  • Time taken = 20 minutes
  • Speed = 5 m/s

To calculate:

  • The distance

Solution:

  • The distance = 6000 m

Knowledge required:

  • SI unit of distance = m
  • SI unit of time = sec
  • SI unit of speed = m/s

Using concepts:

  • Formula to convert min-sec
  • Formula to find distance

Using formulas:

  • 1 min = 60 sec
  • Distance = Speed × Time

Required solution:

~ Firstly let us convert min into sec!

→ 1 min = 60 sec

→ 20 min = 20 × 60 sec

→ 20 min = 1200 seconds

  • Henceforth, converted!

~ Now let's calculate distance!

→ Distance = Speed × Time

→ Distance = 5 × 1200

→ Distance = 6000 m

  • Henceforth, solved! \:

Difference between distance and displacement:

\begin{gathered}\boxed{\begin{array}{c|cc}\bf Distance&\bf Displacement\\\frac{\qquad \qquad \qquad\qquad\qquad \qquad\qquad\qquad}{}&\frac{\qquad \qquad \qquad\qquad\qquad \qquad\qquad\qquad}{}\\\sf Path \: of \: length \: from \: which &\sf The \: shortest \: distance \: between \\ \sf \: object \: is \: travelling \: called \: distance. &\sf \: the \: initial \: point \: \& \: final \\ &\sf point \: is \: called \: displacement. \\\\\sf It \: is \: scalar \: quantity. &\sf It \: is \: vector \: quantity \\\\\sf It \: is \: positive \: always &\sf It \: can \: be \: \pm \: \& \: 0 \: too \end{array}}\end{gathered}

Difference between speed and velocity:

\begin{gathered}\boxed{\begin{array}{c|cc}\bf Speed&\bf Velocity\\\frac{\qquad \qquad \qquad\qquad\qquad \qquad\qquad\qquad}{}&\frac{\qquad \qquad \qquad\qquad\qquad \qquad\qquad\qquad}{}\\\sf The \: distance \: travelled \: by &\sf The \: distance \: travelled \: by \\ \sf \: a \: body \: per \: unit \: time&\sf \: a \: body \: per \: unit \: time \\ &\sf in \: a \: given \: direction \\\\\sf It \: is \: scalar \: quantity. &\sf It \: is \: vector \: quantity \\\\\sf It \: is \: positive \: always &\sf It \: can \: be \: \pm \: \& \: 0 \: too \\\\\sf Speed \: = \dfrac{Distance}{Time} &\sf Velocity \: = \dfrac{Displacement}{Time} \end{array}}\end{gathered}

Answered by Anonymous
75

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}\end{gathered}

  • ➳ Time taken by Salma from her house to reach her school on a bicycle = 20 minutes
  • ➳ Speed of Bicycle = 5 m/s

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{To Find :}}}}}}\end{gathered}

  • ➳ The distance between house and the school.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Using Formula :}}}}}}\end{gathered}

\quad\dag\underline{\boxed{\sf{\purple{Distance = Speed  \times  time}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}\end{gathered}

\bigstar{\underline{\underline{\pmb{\frak{\red{Here : }}}}}}

\quad\dashrightarrow\sf{Speed = 5 \:  m/s}

\quad \dashrightarrow\sf{Time = 20 \:  minutes }

\rule{200}2

\bigstar{\underline{\underline{\pmb{\frak{\red{Firstly, \:  converting  \: the  \: time \:  into  \: second\: : }}}}}}

\quad{: \implies{\sf{1 \:  minute = 60 \:  seconds}}}

  • 20 minutes into seconds

\quad{: \implies{\sf{20 \:  minute = 60 \:  \times 20}}}

\quad{: \implies{\sf{20 \:  minute = 1200 \: seconds}}}

 \quad\dag{\underline{\boxed{\sf{Time = 1200  \: seconds }}}}

  • Hence, The time is 1200 seconds..

\rule{200}2

\bigstar{\underline{\underline{\pmb{\frak{\red{Now,Finding  \: the \:  distance : }}}}}}

\quad{ :  \longmapsto{\sf{Distance = Speed  \times  time}}}

  • Substituting the values

\quad{ :  \longmapsto{\sf{Distance =1200\times  5}}}

\quad{ :  \longmapsto{\sf{Distance =6000 \: m}}}

\quad\dag{\underline{\boxed{\sf{Distance = 6000 \:  m }}}}

  • Henceforth,The Distance between Salma's house to the school is 6000 m.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Learn More :}}}}}}\end{gathered}

\bigstar{\underline{\underline{\pmb{\frak{Formulas : }}}}}

\quad\dag\underline{\boxed{\sf{\red{Distance = Speed  \times  time}}}}

\quad\dag{\underline{\boxed{\sf{\red{Time =  \dfrac{Distance}{Speed}}}}}}

\quad\dag{\underline{\boxed{\sf{\red{Speed =  \dfrac{Distance}{Time}}}}}}

\rule{200}2

\bigstar{\underline{\underline{\pmb{\frak{Units : }}}}}

 \quad\dashrightarrow{\bf{\pink{Time}} : \sf \purple{ Seconds, minutes, hours}}

\quad\dashrightarrow \bf{\pink{Distance}}: {\sf{\purple{meter, kilometer}}}

\quad\dashrightarrow \bf{\pink{Speed}} : \sf{\purple{ km/ hr, m /sec}}

\rule{200}2

\bigstar{\underline{\underline{\pmb{\frak{Conversion \:  of  \: Units: }}}}}

 \quad\leadsto\sf{\green{1  \: km/hr} =  \blue{5/18  \: metre/second}}

\quad \leadsto\sf \green{1 \: metre/second }=  \blue{18/5 \:  km/hr}

 \quad\leadsto\sf \green{1 \: Km/hr}= \blue{ 5/8 \: mile/hr}

\quad \leadsto\sf \green{1 \:  mile/hr} = \blue{22/15 \:  foot/second }

Similar questions