Salute u if u solved this
(Trigonometric ratios of multiple angles )
MATH LEGENDS CAN SOLVE THIS EASILY (question for math leaders)
Attachments:
Answers
Answered by
1
Answer:
Cos4A = 8Sin⁴A - 8Sin²A + 1
Step-by-step explanation:
to be proved
Cos4A = 8Sin⁴A - 8Sin²A + 1
LHS =Cos4A
using Cos2θ = Cos²θ - Sin²θ = 2Cos²θ - 1 = 1 - 2Sin²θ
Cos4A = (2Cos²2A - 1)
Cos2A =( 1 - 2Sin²A)
=>
LHS
= 2( 1 - 2Sin²A)² - 1
= 2( 1 + 4Sin⁴A - 4Sin²A) - 1
= 8Sin⁴A - 8Sin²A + 2 - 1
= 8Sin⁴A - 8Sin²A + 1
= RHS
QED
Hence proved that
Cos4A = 8Sin⁴A - 8Sin²A + 1
Similar questions
Math,
6 months ago
Computer Science,
6 months ago
English,
11 months ago
Science,
1 year ago
Physics,
1 year ago