समीकरण (q-r) x2 + (r - p) x + (p-q) = 0 के मूल हैं-
Answers
Answer:
Consider the given equations:
(q-r)x^2+(r-p)x+(p-q)=0 and (r-p)x^2+(p-q)x+(q-r)=0
Comparing these equations to the general form of the quadratic equation,
we get a_1 =(q-r) , b_1=(r-p) ,c_1= (p-q)
a_2 =(r-p) , b_2=(p-q) ,c_2= (q-r)
The equations have a common root when
(c_1a_2-c_2a_1)^2 = (b_1c_2-b_2c_1)(a_1b_2-a_2b_1)
Consider (c_1a_2-c_2a_1)^2
= [(p-q)(r-p)-(q-r)(q-r)]^2
= (pr-p^2-qr+qp-q^2-r^2+2qr)^2
= (pr-p^2-q^2+qp-r^2+qr)^2
=(-p^2-q^2-r^2+pq+pr+rq)^2
Consider (b_1c_2-b_2c_1)(a_1b_2-a_2b_1)
= [(r-p)(q-r)-(p-q)(p-q)] [(q-r)(p-q) - (r-p)(r-p)]
= (-p^2-q^2-r^2+pq+pr+rq)(-p^2-q^2-r^2+pq+pr+rq)
= (-p^2-q^2-r^2+pq+pr+rq)^2
Therefore, (c_1a_2-c_2a_1)^2 = (b_1c_2-b_2c_1)(a_1b_2-a_2b_1)
Hence, the given equations have a common root.
Step-by-step explanation:
now can you understand :)