samikaran Mein Se pratyek samikaran Ke Char cal likhiye
a. πx+y=9
Answers
Answer:
Given
−
\pink\longrightarrow\small\sf \pink{The \: length \: of \: a \: rectangular \: field \: is \: 60 m}⟶Thelengthofarectangularfieldis60m⟶Thelengthofarectangularfieldis60m⟶Thelengthofarectangularfieldis60m
\pink\longrightarrow\small\sf \pink{The \: breadth \: is \: 2/3 \: of \: its \: length }⟶Thebreadthis2/3ofitslength < /p > < p > \bf \underline{\underline \orange{To \: Find}} -⟶Thebreadthis2/3ofitslength⟶Thebreadthis2/3ofitslength</p><p>
ToFind
−
ToFind
−
\pink\longrightarrow\small\sf \purple{Area \: of \: Rectangular \: Field }⟶AreaofRectangularField < /p > < p > \large\bf\underline{\underline \green{Solution}} -⟶AreaofRectangularField⟶AreaofRectangularField</p><p>
Solution
−
Solution
−
Here,
\purple\longrightarrow\small\sf \pink{Length} = \purple{L}⟶Length=L⟶Length=L⟶Length=L
[\purple\longrightarrow\small\sf \pink{Breadth}=\purple{B}⟶Breadth=B
Firstly We Find The Breadth.
We known that
Be is 2/3 of it's length.
So,
\blue\Longrightarrow\small \sf \pink{B} = \purple {L× \dfrac{2}{3}}⟹B=L×⟹B=L×
3
2
⟹B=L×
3
2
\blue\Longrightarrow\small \sf \pink{B} = \purple {\dfrac{2L}{3}}⟹B=⟹B=
3
2L
⟹B=
3
2L
\blue\Longrightarrow\small\sf \pink{B}= \purple{\dfrac{2 \times 60}{3} }⟹B=⟹B=
3
2×60
⟹B=
3
2×60
\blue\Longrightarrow\small\sf\pink{B}=\purple{\cancel\dfrac{120}{3}}⟹B=⟹B=
3
120
⟹B=
3
120
\blue\Longrightarrow\small\sf \pink{B} = \purple{40m}⟹B=40m⟹B=40m⟹B=40m
Now, we know that the field's breath is 40 cm.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Now,we find the area of Field. < /p > < p > {\green\Longrightarrow{\small \sf \red{Area \: of \: Rectangle \: is} = \blue{Length × Breadth }}}Now,wefindtheareaofField.</p><p>⟹AreaofRectangleis=Length×Breadth }⟹AreaofRectangleis=Length×Breadth
So,
{\green\Longrightarrow\small \sf \red{Area \: of \: Rectangular \: Field} = \blue{60 \times 40} }⟹AreaofRectangularField=60×40
{\green\Longrightarrow\small \sf \red{Area \: of \: Rectangular \: Field \: is } = \blue{2400 \:{m}^{2}}}⟹AreaofRectangularFieldis=2400m
2
}⟹AreaofRectangularFieldis=2400m
2
Therefore -
The Area of Rectangular Field is 2400 m².
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
\bf\underline{\underline \orange{More \: Useful \: Formulas}}
MoreUsefulFormulas
MoreUsefulFormulas
{\blue\longrightarrow\small\sf \purple{Area\:of \:Rectangle}= \pink{ Length × Breadth} }⟶AreaofRectangle=Length×Breadth
{\blue\longrightarrow\small\sf \purple{Perimeter \:of \:Rectangle}= \pink{ 2(Length × Breadth)}}⟶PerimeterofRectangle=2(Length×Breadth) }⟶PerimeterofRectangle=2(Length×Breadth