Math, asked by subhajit12385, 10 months ago

Sample Paper 2020 Maths Question 14
Please help!​

Attachments:

Answers

Answered by Anonymous
0

Given \:  \: Question \:  \: Is \\  \\ equation \:  \: of \:  \: curve \:  \: is \: \:  \:  y {}^{2}  + 3x - 7 = 0 \\ equation \: of \: line \: parallel \: to \: the \: tangent \:is \\ x - y = 4 \\ find \:  \: k \\  \\  \\ Answer \:  \\  \\ the \: point \:  \: (h \:  \: \:  k) \:  \: lies \: on \: the \: curve \: so \: it \\ must \: satisfies \: the \: equation \: of \: curve. \:  \: i.e \\  \\ h {}^{2}  + 3k - 7 = 0 \:  \:  \: ...equation \:  \: 01 \\  \\ equation \: of \: parallel \: line \: is \:  \: \\  x - y = 4 \:  \:  \:  \: ...equation \:  \: 02 \\  \\ slope \:  \: of \:  \: equation \:  \:  \: 01 \:  \: is \\  \\ 2h \frac{dh}{dk}  + 3 = 0 \\  \\  \frac{dh}{dk}  =  \frac{ - 3}{2h}  \\  \\ and \\  \\ slope \: of \: equation \:  \: 02 \:  \: is \\  \\ 1 -  \frac{dy}{dx}  = 0 \\  \\  \frac{dy}{dx}  = 1 \\  \\ now \:  \: both \: the \: lines \: are \: parallel \: so \: their \: slopes \\ are \: equal \\  \\ 1 =  \frac{ - 3}{2h}  \\  \\ 2h =  - 3 \\  \\ h =  \frac{ - 3}{2}  \\  \\ now \:  \: substitute \:  \: the \: value \: of \: h \:  \\ in \: equation \:  \: 01 \\  \\ ( \frac{ - 3}{2} ) {}^{2}  + 3k - 7 = 0 \\  \\  \frac{9}{4}  - 7 =  - 3k \\  \\  - 3k =   \frac{ - 19}{4}  \\  \\ k =  \frac{19}{12}  \\  \\ therefore \:  \:  \: k =  \frac{19}{12}

Similar questions