Math, asked by rishuraj1857, 8 months ago

Samyak has an integer 2926 he wonders what is the minimum number x he needs such that on writing x as the sum of positive numbers the product of these positive numbers is equal to 2926​

Answers

Answered by binalsorathiya559
2

Answer:

x is 1 my be right or not

Step-by-step explanation:

ok

Answered by saounksh
0

ANSWER

  • Minimum x = 39

EXPLAINATION

The prime factorization of 2926 is

2926 = 2\times 7\times 11\times 19

Following are possible value of x

x = 1 + (2\times 7\times 11\times 19)

\:\:\:= 1 + 2926 = 2927

x = 2 + (7\times 11\times 19)

\:\:\:= 2+1463 = 1465

x=7 + (2\times 11\times 19)

\:\:\: =7+418 = 425

x = 11 + (2\times 7\times 19)

\:\:\:= 11+266= 277

x = 19 + (2\times 7\times 11)

\:\:\:=19+154= 173

x = (2\times 7)+(11\times 19)

\:\:\:=14+209= 223

x = (2\times 11)+(7\times 19)

\:\:\:=22+133= 155

x = (2\times 19)+(7\times 11)

\:\:\:=38+77= 115

x = 1+1 + (2\times 7\times 11\times 19)

\:\:\: = 1 +1+ 2926 = 2928

x = 1+2 + (7\times 11\times 19)

\:\:\:= 1+2+1463 = 1466

x=1+7 + (2\times 11\times 19)

\:\:\: =1+7+418 = 426

x = 1+11 + (2\times 7\times 19)

\:\:\:=1+ 11+266= 278

x = 1+19 + (2\times 7\times 11)

\:\:\:= 1+19+154= 174

x = 1+(2\times 7)+(11\times 19)

\:\:\:= 1+14+209= 224

x = 1+(2\times 11)+(7\times 19)

\:\:\:=1+22+133= 156

x = 1+(2\times 19)+(7\times 11)

\:\:\:= 1+38+77= 116

x = (2\times 7)+11+ 19

\:\:\:= 14 + 11+19 = 44

x = (2\times 11)+7+ 19

\:\:\:= 22 + 7 +19 = 48

x = (2\times 19)+7+ 11

\:\:\:= 38 + 7 +11 = 56

x = (7\times 11)+2+ 19

\:\:\:= 77 + 2+19 = 98

x = (7\times 19)+2+ 11

\:\:\:= 133 + 2 +11 =146

x = (11\times 19)+2+ 7

\:\:\:= 209 + 2 +7 = 218

x = 1+1+1 + (2\times 7\times 11\times 19)

\:\:\: = 1+1 +1+ 2926 = 2929

x = 1+1+2 + (7\times 11\times 19)

\:\:\:= 1+1+2+1463 = 1467

x=1+1+7 + (2\times 11\times 19)

\:\:\: =1+1+7+418 = 427

x = 1+1+11 + (2\times 7\times 19)

\:\:\:=1+1+ 11+266= 279

x = 1+1+19 + (2\times 7\times 11)

\:\:\:=1+ 1+19+154= 175

x = 1+1+(2\times 7)+(11\times 19)

\:\:\:=1+ 1+14+209= 225

x = 1+1+(2\times 11)+(7\times 19)

\:\:\:=1+1+22+133= 157

x = 1+1+(2\times 19)+(7\times 11)

\:\:\:= 1+1+38+77= 117

x = 1+(2\times 7)+11+ 19

\:\:\:= 1+14 + 11+19 = 45

x = 1+(2\times 11)+7+ 19

\:\:\:= 1+22 + 7 +19 = 49

x =1+ (2\times 19)+7+ 11

\:\:\:= 1+38 + 7 +11 = 57

x = 1+(7\times 11)+2+ 19

\:\:\:= 1+77 + 2+19 = 99

x = 1+(7\times 19)+2+ 11

\:\:\:= 1+133 + 2 +11 =147

x =1+ (11\times 19)+2+ 7

\:\:\:= 1+209 + 2 +7 = 219

x = 2+ 7 + 11 + 19 = 39

It is clear from these that x = 39 is the least value of x which satisfy the condition given in question.

Similar questions