Sara and Sam are each working on a science project in which they need to research the individual masses of the nine planets (including the dwarf planet Pluto as the ninth planet). Sara completes her data for the planets' masses in kilograms while Sam's data is in milligrams. Use the following data tables to complete parts I, II, and III.
Sara:
Planet Mass (in kilograms)
Jupiter 1.989 · 1027
Saturn 5.685 · 1026
Neptune 1.024 · 1026
Uranus 8.681 · 1025
Earth 5.974 · 1024
Venus 4.869 · 1024
Mars 6.419 · 1023
Mercury 3.302 · 1023
Pluto 1.31 · 1022
Sam:
Planet Mass (in milligrams)
Jupiter 1.989 · 1033
Saturn 5.685 · 1032
Neptune 1.024 · 1032
Uranus 8.681 · 1031
Earth 5.974 · 1030
Venus 4.869 · 1030
Mars 6.419 · 1029
Mercury 3.302 · 1029
Pluto 1.31 · 1028
Part I: Although both data tables represent correct data for each
Answers
Answer:
dkehej qwo igg mydsb jdxm
Answer:
Sara and Sam are each working on a science project in which they need to research the individual masses of the nine planets (including the dwarf planet Pluto as the ninth planet). Sara completes her data for the planets' masses in kilograms while Sam's data is in milligrams. Use the following data tables to complete parts I, II, and III.
Sara:
Planet Mass (in kilograms)
Jupiter 1.989 · 10^27
Saturn 5.685 · 10^26
Neptune 1.024 · 10^26
Uranus 8.681 · 10^25
Earth 5.974 · 10^24
Venus 4.869 · 10^24
Mars 6.419 · 10^23
Mercury 3.302 · 10^23
Pluto 1.31 · 10^22
Sam:
Planet Mass (in milligrams)
Jupiter 1.989 · 10^33
Saturn 5.685 · 10^32
Neptune 1.024 · 10^32
Uranus 8.681 · 10^31
Earth 5.974 · 10^30
Venus 4.869 · 10^30
Mars 6.419 · 10^29
Mercury 3.302 · 10^29
Pluto 1.31 · 10^28
Part I: Although both data tables represent correct data for each of the planet’s masses, who represented Jupiter’s mass with the most appropriate units, Sara or Sam?
Part II: In two or more complete sentences, explain your reasoning for your answer in Part I.
Part III: Use multiplication, division, and scientific notation to show that Sara’s representation of Jupiter’s mass in kilograms is equal to Sam’s representation of Jupiter’s mass in milligrams.
Use milligrams to prove that 1.989 · 10^27 kilograms is equal to 1.989 · 10^33 milligrams.
Use kilograms to prove that 1.989 · 10^33 milligrams is equal to 1.989 · 10^27 kilograms.