Hindi, asked by mayameena14367, 2 months ago

सर्विाम ककसे कहते हैं? इसके ककतिे भेद होते हैं? िाम निनिए |​

Answers

Answered by jasvindarsinghkuttan
15

Explanation:

For Mean :

frequency (fi) = 50

fi xi = 1860

Using Formula :

\longmapsto\tt\boxed{Mean=\dfrac{\sigma\:fixi}{fi}}⟼Mean=fiσfixi

Putting Values :

\longmapsto\tt{Mean=\cancel\dfrac{1860}{50}}⟼Mean=501860

\longmapsto\tt\bf{Mean=37.2}⟼Mean=37.2

For Mode :

{f}_{0}=10f0=10

{f}_{1}=12f1=12

{f}_{2}=8f2=8

l = 40

h = 10

Using Formula :

\longmapsto\tt\boxed{Mode=l+\dfrac{{f}_{1}-{f}_{0}}{{2f}_{1}-{f}_{0}-{f}_{2}}\times{h}}⟼Mode=l+2f1−f0−f2f1−f0×h

Putting Values :

\longmapsto\tt{40+\bigg(\dfrac{12-10}{24-18}\bigg)\times{10}}⟼40+(24−1812−10)×10

\longmapsto\tt{40+\dfrac{2}{6}\times{10}}⟼40+62×10

\longmapsto\tt{40+\dfrac{10}{3}}⟼40+310

\longmapsto\tt{40+3.3}⟼40+3.3

\longmapsto\tt\bf{43.3}⟼43.3

For Median :

n / 2 = 50/2 = 25

l = 40

h = 10

cf = 26

Using Formula :

\boxed{Median=l+\bigg(\dfrac{\dfrac{n}{2}-cf}{f}\bigg)\times{h}}Median=l+(f2n−cf)×h

Putting Values :

\longmapsto\tt{40=\bigg(\dfrac{25-26}{12}\bigg)\times{10}}⟼40=(1225−26)×10

\longmapsto\tt{40+\dfrac{(-1)}{12}\times{10}}⟼40+12(−1)×10

\longmapsto\tt{40-\dfrac{10}{12}}⟼40−1210

\longmapsto\tt{40-0.8}⟼40−0.8

\longmapsto\tt\bf{39.2}⟼39.2

___________________

{f}_{0}f0 =class preceding the modal class .

{f}_{1}f1 =frequency of modal class .

{f}_{2}f2 =class secceeding the modal class .

l = lower limit

h = class size

n = number of observations

cf = cumulative frequency of class preceding the median class .

please mark me brainliest please and give me thanks please I need it please I will fol.low you

Similar questions