Math, asked by MayaKhattar, 1 month ago

Saransh deposits Rs.200 per month for 36 months in a bank's recurring deposit account. If the bank pays interest at the rate of 11% per annum, find the amount he gets on maturity.​

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
127

Given:–

  • Saransh deposited or Principal = Rs.200
  • n = 36 months
  • Rate of interest = 11%

To find:–

  • Amount he will get on maturity

Formulas used:–

Computing maturity value

  • \bold{ \pink {\boxed{\text{I} =  \text{P} \times  \dfrac{ \text{n(n + 1)}}{2 \times 12}  \times  \dfrac{ \text{r}}{100} }}}

where,

• I = Interest

• P = Principal

• n = number of months

• r = Rate

Step by step explaination:-

If a sum of Rs.P is deposited every month in a bank for n number of months. If rate of interest is r% that is for per year, therefore the Interest on whole deposit is calculated by the above given formula.

 \mathfrak{Therefore,\: evaluating \:values \:in \:the \:given\: formula}

\:  \:  \:  :\implies \:  \:  \:  \:  \:  \:  \: \text{I} = 200 \times  \dfrac{36(36 + 1)}{2 \times 12}  \times  \dfrac{11}{100}

\underline\bold{ \mathfrak{solving..}}

\:  \:  \:  :\implies \:  \:  \:  \:  \:  \:  \: \text{I} = 200 \times  \dfrac{36 \times 37}{2 \times 12}  \times  \dfrac{11}{100}

\:  \:  \:  :\implies \:  \:  \:  \:  \:  \:  \: \text{I} = \cancel{200} \times  \dfrac{36 \times 37}{ \cancel2 \times  \cancel{12}}  \times  \dfrac{11}{100}

\:  \:  \:  :\implies \:  \:  \:  \:  \:  \:  \: \text{I} =   \text{rs.1221}

\underline\bold{ \mathfrak{Total\: sum \:deposited\: in\: n\: months..}}

→ Sum deposited every month × number of months

→ P × n

→ Rs.200 × Rs.36

→ Rs.7200

\underline\bold{ \mathfrak{Amount \:Saransh\: will\: receive\: at \:maturity \:time:-}}

→ Rs.7200 + Rs.1221

→ Rs.8421

Conclusion:–

He will get amount Rs.8421 on maturity

Similar questions