Math, asked by tapumishra277, 1 year ago

Say the ans immediately ​

Attachments:

Answers

Answered by anu24239
6

\huge\mathfrak\red{Answer}

x =  {cos}^{2}  \alpha   +  {sin}^{4}  \alpha  \\  \\ x = (1 -  {sin}^{2}  \alpha ) +  {sin}^{4}  \alpha  \\ x = 1 + ( {sin}^{ 4 }  \alpha  -  {sin}^{2}  \alpha ) \\  \\ so \: from \: this \: we \: can \: conclude \\ that \: maximum \: value \: of \: x \: is \:  \\ only \: when \:  ({sin}^{4}  \alpha   -  {sin}^{2}  \alpha ) \:  \\ is \: minimum \\  \\ minimum \: value \: of \: sin \alpha  \: is \: zero \\ at \:  \alpha  = 0 \\  \\ maximum \: value \: of \: x \\  1 + ( {sin}^{4}  \alpha  -  {sin}^{2}  \alpha ) \\ 1 + ( {sin}^{4} 0 -  {sin}^{2}  0) = 1.....(1) \\  \\ minimum \: value \: of \: x \: is \: when \\  {sin}^{4}  \alpha  -  {sin}^{2}  \alpha  \: is \: minimum \\ we \: can \: find \: its \: minimum \: by \\ maxima \\  \\ let \: m =  {sin}^{4}  \alpha   -  {sin}^{2}  \alpha  \\ differentiate \: this \: equation \\  \\  \frac{dm}{d \alpha }  = 4 {sin}^{3}.cos \alpha   \alpha  - 2 \sin \alpha . \cos \alpha  \\  \\ 0 =  \sin \alpha  \cos \alpha (4 {sin}^{2}  \alpha  - 2) \\  \\ we \: get \:  \sin \alpha  =  \frac{1}{ \sqrt{2} }  \\  \\ minimum \: value \: of \: x \\  \\ x = 1 + ( ({ \frac{1}{ \sqrt{2} } )}^{4}   -  \frac{1}{ {( \sqrt{2}) }^{2} } ) \\  \\ x = 1 +  \frac{1}{4}  -  \frac{1}{2}  \\  \\ x =  \frac{3}{4}....(2)  \\  \\ from \: (1) \: and \: (2) \: we \: can \: say \: that \\  \frac{3}{4}  \leqslant x \leqslant 1

Similar questions