Math, asked by parneetkamboj1112, 7 months ago

SB 5
Divide p(x) by g(x) and write the quotient, the remainder, and the division equation for the following.
Practice Question 1
For each case, determine if g(x) is a factor of p(x).
Division by a Monomial
1.1
Division by a Binomial
p(x)
g(x)
g(x)
3x
x+1
9x
X-3
- 3x

2x
(a) 9x2 – 3x + 12
(b) 3x5 - 15x3 + 6x
(C) x + 6x – 1
(d) 11x5 + 7x3 - 2x
(e) 8x3 - x2 + 2x - 1
(0) x2 + 5x + 6
(g) x6 - 4x4 + 3x2
(h) x3 + 6x - 1
(0) 3x5 - 15x3 + 6x
(0) x + 7x - 1
p(x)
(a) x3 - 2x2 - 4x - 1
(b) x3 - 3x2 + 4x + 50
(c) 4x3 - 12x2 + 14x - 3
(d) x3 - 6x2 + 2x - 4
(e) x² – 3x² + 5x - 3
(f) x4 - 3x2 + 4x + 5
(g) x4 - 5x +6
(h) 5x3 - 3x2 + 7x +5
(1) 4x² – 3x²+x-6
(1) 7x² - 4x²+6x +
2x-1
1-32
x² - 2
1-x
2-x²
x-7
2x-1

5x2
-3x
x - 4
9x
-2x​

Answers

Answered by Anonymous
0

Answer:

PLZZ follow me ❤️❤️❤️❤️❤️

ANSWER

A polynomial p(x) is defined as

⇒p(x)=g(x)q(x)+r(x)

where g(x)= divisor ; q(x)= quotient and r(x)= remainder

∴ p(x) can be found by multiplying g(x) with q(x) & adding r(x) to the product.

(i).g(x)=(x−2); q(x)=x

2

−x+1; r(x)=4

∴p(x)=(x−2)[x

2

−x+1]+4

=x

3

−x

2

+x−2x

2

+2x−2+4

=x

3

−3x

2

+3x+2

(ii).g(x)=(x+3); q(x)=2x

2

+x+5; r(x)=3x+1

∴p(x)=(x+3)[2x

2

+x+5]+(3x+1)

=2x

3

+x

2

+5x+6x

2

+3x+15+3x+1

=2x

3

+7x

2

+11x+16

(iii).g(x)=(2x+1); q(x)=x

3

+3x

2

−x+1; r(x)=0

∴p(x)=(2x+1)[x

3

+3x

2

−x+1]+(0)

=2x

4

+6x

3

−2x

2

+2x+x

3

+3x

2

−x+1

=2x

4

+7x

3

+x

2

+x+1

(iv).g(x)=(x−1); q(x)=x

3

−x

2

−x−1; r(x)=2x−4

∴p(x)=(x−1)[x

3

−x

2

−x−1]+(2x−4)

=x

4

−x

3

−x

2

−x−x

3

+x

2

+x+1+2x−4

=x

4

−2x

3

+2x−3

(v).g(x)=(x

2

+2x+1); q(x)=x

4

−2x

2

+5x−7; r(x)=4x+12

∴p(x)=(x

2

+2x+1)[x

4

−2x

2

+5x−7]+(4x+12)

=x

6

−2x

4

+5x

3

−7x

2

+2x

5

+4x

3

+10x

2

−14x+x

4

−2x

2

+5x−7+4x+12

=x

6

−x

4

+x

3

+x

2

+2x

5

−5x+5

=x

6

+2x

5

−x

4

+x

3

+x

2

−5x+5

Hence, solve.

Answered by armaansharma85
1

The division of p(x)=x

4

−3x

2

−4 by g(x)=x+2 is as shown above:

Now we know that the division algorithm states that:

Dividend=(Divisor×quotient)+Remainder

Here, the dividend is x

4

−3x

2

−4, the divisor is x+2, the quotient is x

3

−2x

2

+x−2 and the remainder is 0, therefore,

x

4

−3x

2

−4=[(x+2)(x

3

−2x

2

+x−2)]+0

⇒x

4

−3x

2

−4=[x(x

3

−2x

2

+x−2)+2(x

3

−2x

2

+x−2)]+0

⇒x

4

−3x

2

−4=x

4

−2x

3

+x

2

−2x+2x

3

−4x

2

+2x−4+0

⇒x

4

−3x

2

−4=x

4

−2x

3

+2x

3

+x

2

−4x

2

−2x+2x−4

⇒x

4

−3x

2

−4=x

4

−3x

2

−4

Hence, the division algorithm is verified.

bro mujhe g Tak aata tha

Hope it helps

pls mark me as brainliest

Similar questions